首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Daily integrals of photosynthesis by a cyanobacterial bloom in the Baltic Sea, during the summer of 1993, were calculated from the vertical distributions of light, temperature and the organisms in the water column and from photosynthesis/irradiance curves of picoplanktonic and diazotrophic cyanobacteria isolated from the community. The distribution of chlorophyll a in size-classes <20?µm and >20?µm was monitored over 9 days that included a deep mixing event followed by calm. Picocyanobacteria formed 70% of the cyanobacterial biomass and contributed 56% of the total primary production. Of the filamentous diazotrophs that formed the other 30%, Aphanizomenon contributed 28% and a Nodularia-containing fraction 16% of the primary production. For the whole population there was little change in standardized photosynthetic O2 production, which remained at about 31?mmol?m?2 before and after the mixing event. There were differences, however, between the classes of cyanobacteria: in picocyanobacteria primary production hardly changed, while in Aphanizomenon it increased by 2.6 and in Nodularia it fell below zero. Total phytoplankton photosynthesis was strongly dependent on total daily insolation with the compensation point at a photon insolation of 22.7?mol?m?2?d?1. Similar analyses of N2 fixation showed much less dependence on depth distribution of light and biomass: Aphanizomenon fixed about twice as much N2 as Nodularia their; their fixation exceeded their own N demand by about 12%. Together, these species contributed 49% of the total N demand of the phytoplankton population. Computer models based on the measured light attenuation and photosynthetic coefficients indicate that growth of the cyanobacterial population could occur only in the summer months when the critical depth of the cyanobacteria exceeds the depth of mixing.  相似文献   

2.
N2 fixation, measured as acetylene reduction, was studied in laboratory cultures and in natural assemblages (both as a mixed population and as individually picked colonies) of the heterocystous cyanobacteria Aphanizomenon sp. and Nodularia spp. from the Baltic Sea. During a diurnal cycle of alternating light and darkness, these organisms reduced acetylene predominantly during the period of illumination, although considerable activity was also observed during the dark period. In both laboratory cultures and natural populations N2 fixation was saturated below a photon flux density of 600 μm−2 s−1. In cyanobacterial blooms in the Baltic Sea, nitrogenase activity was mostly confined to the surface layers. Samples collected from greater depths did not possess the same capacity for acetylene reduction as samples from the surface itself, even when incubated at the photon flux density prevailing in surface waters. This suggests that, with respect to N2 fixation, Baltic cyanobacteria are adapted to the intensity of illumination that they are currently experiencing.  相似文献   

3.
    
Eutrophication, increased temperatures and stratification can lead to massive, filamentous, N2-fixing cyanobacterial (FNC) blooms in coastal ecosystems with largely unresolved consequences for the mass and energy supply in food webs. Mesozooplankton adapt to not top-down controlled FNC blooms by switching diets from phytoplankton to microzooplankton, resulting in a directly quantifiable increase in its trophic position (TP) from 2.0 to as high as 3.0. If this process in mesozooplankton, we call trophic lengthening, was transferred to higher trophic levels of a food web, a loss of energy could result in massive declines of fish biomass. We used compound-specific nitrogen stable isotope data of amino acids (CSIA) to estimate and compare the nitrogen (N) sources and TPs of cod and flounder from FNC bloom influence areas (central Baltic Sea) and areas without it (western Baltic Sea). We tested if FNC-triggered trophic lengthening in mesozooplankton is carried over to fish. The TP of cod from the western Baltic (4.1 ± 0.5), feeding mainly on decapods, was equal to reference values. Only cod from the central Baltic, mainly feeding on zooplanktivorous pelagics, had a significantly higher TP (4.6 ± 0.4), indicating a strong carry-over effect trophic lengthening from mesozooplankton. In contrast, the TP of molluscivorous flounder, associated with the benthic food web, was unaffected by trophic lengthening and quite similar reference values of 3.2 ± 0.2 in both areas. This suggests that FNC blooms lead to a large loss of energy in zooplanktivorous but not in molluscivorous mesopredators. If FNC blooms continue to trigger the detour of energy at the base of the pelagic food web due to a massive heterotrophic microbial system, the TP of cod will not return to lower TP values and the fish stock not recover. Monitoring the TP of key species can identify fundamental changes in ecosystems and provide information for resource management.  相似文献   

4.
    
The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High‐quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC‐MS, stable isotope labeling as well as bulk and compound‐specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega‐3 (ω‐3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω‐3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha‐linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton‐derived DHA for zooplankton and juvenile fish, suggesting bottom‐up regulation of food web quality.  相似文献   

5.
    
Mesozooplankton production was estimated by using a new sampling technique and two alternative calculation methods. In essence, production estimates are based on significantly higher abundances. The contribution of juvenile stages to copepod and fish dynamics was generally low, so that the omission of juvenile stages in budgets will result in a small error. The situations reported in this study present a unique food web szenario, which in detail, however, was strongly dependent on methodology. Furthermore, relations between trophic levels were considered with respect to vertical distribution.  相似文献   

6.
The structure of the planktonic community and the influence of mesozooplankton migration on the microbial food web were investigated during six diel studies from June 92 to June 93 in the surface waters of a station in the North-Western Mediterranean Sea. Each diel study consisted of sampling at 5 and 40 m every 3 h over 24 h. Most of the times diel cycles did not show any convincing diel patterns in any of the variables studied. Clear zooplankton migration was evident in only two diel studies.The ratio of heterotrophic/autotrophic biomasses varied from 0.68 to 3.0, with a strong dominance of the heterotrophic biomass under oligotrophic conditions. Differences in food web structure were probably related to the influences of coastal water and the North-Western Mediterranean Current. Thus we found that the planktonic food web variability relatable to hydrodynamic variability, to be greater than diel variability. However, very large differences in food web structure among dates were evident. For example proportion of Chl a found in the <10 µm fraction varied from 18 to 96%.  相似文献   

7.
1. We propose that the appearance and establishment of Nostocales (cyanobacteria) species of the genera Aphanizomenon and Cylindrospermopsis in the warm subtropical Lake Kinneret (Sea of Galilee, Israel) from 1994 was linked to changes in climate conditions and summer nitrogen (N) availability. 2. From 1994 to 2009, an increase in frequency of events of elevated water temperature (>29 °C) in summer, and to some extent a greater frequency of lower summer wind speed events, affected water turbulence and water column stratification, thus providing better physical conditions for the establishment of these populations. 3. In recent years, N‐depleted conditions in Lake Kinneret in early summer have promoted the development and domination of Nostocales that could gain an ecological advantage owing to their N2‐fixing capability. 4. Nitrogen fixation rates coincided both with heterocyst abundance and with Nostocales biomass. The N supplied to the lake via nitrogen fixation ranged from negligible quantities when Nostocales represented only a minor component of the phytoplankton community to 123 tonnes when Cylindrospermopsis bloomed in 2005. This high N2 fixation rate equals the average summer dissolved inorganic nitrogen load to the lake via the Jordan River.  相似文献   

8.
    
Arctic food webs are being impacted by borealisation and environmental change. To quantify the impact of these multiple forcings, it is crucial to accurately determine the temporal change in key ecosystem metrics, such as trophic position of top predators. Here, we measured stable nitrogen isotopes (δ15N) in amino acids in harp seal teeth from across the North Atlantic spanning a period of 60 years to robustly assess multi-decadal trends in harp seal trophic position, accounting for changes in δ15N at the base of the food web. We reveal long-term variations in trophic position of harp seals which are likely to reflect fluctuations in prey availability, specifically fish- or invertebrate-dominated diets. We show that the temporal trends in harp seal trophic position differ between the Northwest Atlantic, Greenland Sea and Barents Sea, suggesting divergent changes in each local ecosystem. Our results provide invaluable data for population dynamic and ecotoxicology studies.  相似文献   

9.
    
Increasing sea surface temperatures (SST) and blooms of lipid‐poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build‐up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate Temora longicornis and boreal Pseudo‐/Paracalanus spp. that dominated field mesozooplankton communities isolated by seasonal stratification in the central Baltic Sea during the hot and the cold summer. We looked at (a) total lipid and protein levels, (b) FA trophic markers and AA composition, and (c) compound‐specific stable carbon isotopes (δ13C) in bulk mesozooplankton and in a subset of parameters in particulate organic matter. Despite lipid‐poor cyanobacterial blooms, the key species were largely able to cover both energy pools, yet a tendency of lipid reduction was observed in surface animals. Omni‐ and carnivory feeding modes, FA trophic makers, and δ13C patterns in essential compounds emphasized that cyanobacterial FAs and AAs have been incorporated into mesozooplankton mainly via feeding on mixo‐ and heterotrophic (dino‐) flagellates and detrital complexes during summer. Foraging for essential highly unsaturated FAs from (dino‐) flagellates may have caused night migration of Pseudo‐/Paracalanus spp. from the deep subhalocline waters into the upper waters. Only in the hot summer (SST>19.0°C) was T. longicornis submerged in the colder subthermocline water (~4°C). Thus, the continuous warming trend and simultaneous feeding can eventually lead to competition on the preferred diet by key copepod species below the thermocline in stratified systems. A comparison of δ13C patterns of essential AAs in surface mesozooplankton across sub‐basins of low and high cyanobacterial biomasses revealed the potential of δ13C‐AA isoscapes for studies of commercial fish feeding trails across the Baltic Sea food webs.  相似文献   

10.
稳定性同位素技术在生态学上的应用   总被引:9,自引:2,他引:9  
稳定性同位素技术早在20世纪70年代末期就被引入到生态学领域。最初是利用植物稳定性碳同位素的差异。开展了许多有关营养流动方面的研究;到90年代,稳定性碳和氮同位素被用来分析动物的食性、营养级位置关系以及食物链结构;本世纪初,由于技术的进步,稳定性同位素(特别是氢同位素)被用来开展动物迁徙习性方面的研究。到目前为止,国内有关这方面的研究还鲜有报道,而且对自然界存在的稳定性同位素的理解还存在一定偏差。本文主要介绍了稳定性同位素效应及其分馏原理、稳定性同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究动物迁徙生态学中的作用等方面的内容。  相似文献   

11.
    
1. Subarctic ponds are seasonal aquatic habitats subject to short summers but often have surprisingly numerous planktonic consumers relative to phytoplankton productivity. Because subarctic ponds have low pelagic productivity but a high biomass of benthic algae, we hypothesised that benthic mats provide a complementary and important food source for the zooplankton. To test this, we used a combination of fatty acid and stable isotope analyses to evaluate the nutritional content of benthic and pelagic food and their contributions to the diets of crustacean zooplankton in 10 Finnish subarctic ponds. 2. Benthic mats and seston differed significantly in total lipids, with seston (62.5 μg mg?1) having approximately eight times higher total lipid concentrations than benthic mats (7.0 μg mg?1). Moreover, the two potential food sources differed in their lipid quality, with benthic organic matter completely lacking some nutritionally important polyunsaturated fatty acids (PUFA), most notably docosahexaenoic acid and arachidonic acid. 3. Zooplankton had higher PUFA concentrations (27–67 μg mg?1) than either of the food sources (mean benthic mats: 1.2 μg mg?1; mean seston: 9.9 μg mg?1), indicating that zooplankton metabolically regulate their accumulation of PUFA. In addition, when each pond was evaluated independently, the zooplankton was consistently more 13C‐depleted (δ13C ?20 to ?33‰) than seston (?23 to ?29‰) or benthic (?15 to ?27‰) food sources. In three ponds, a subset of the zooplankton (Eudiaptomus graciloides, Bosmina sp., Daphnia sp. and Branchinecta paludosa) showed evidence of feeding on both benthic and planktonic resources, whereas in most (seven out of 10) ponds the zooplankton appeared to feed primarily on plankton. 4. Our results indicate that pelagic primary production was consistently the principal food resource of most metazoans. While benthic mats were highly productive, they did not appear to be a major food source for zooplankton. The pond zooplankton, faced by strong seasonal food limitation, acquires particular dietary elements selectively.  相似文献   

12.
Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by zooplankton and benthic organisms.We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a zooplankton biomass of 0.2 mg l–1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.  相似文献   

13.
A variety of analyses were used to assess the structure (community composition) and function (assimilation number, nitrogen fixation) of phytoplankton in the Neuse River Estuary (NRE), NC under ambient and modified nutrient concentrations. Dilution bioassays were employed to reduce the concentration of nitrogen (N) or both N and phosphorus (P) and thus compare varied DIN:DIP ratios. Experimental manipulations created conditions that may result from mandated N load reductions to the estuary. We hypothesized that unilateral reduction of N loading to the NRE would increase the activity, abundance and diversity of N2 fixing cyanobacteria. Changes in phytoplankton primary productivity, N2 fixation (nitrogenase activity), genetic potential for N2 fixation (presence of nifH), phytoplankton taxonomic composition (diagnostic photopigment concentration) and abundances of N2 fixing cyanobacteria (microscopy) were determined. Decreasing ambient DIN:DIP ratios in NRE samples resulted in increased rates of N2 fixation when seed populations were present and environmental conditions were amenable. Decreasing the DIN:DIP ratio did not lead to an increase in the abundance or diversity of N2 fixing cyanobacteria. Because N2 fixing cyanobacteria were only actively fixing nitrogen during periods of low riverine N discharge (summer and early autumn), lowering nutrient ratios may not have a major impact on the NRE. However, the maximum potential amount of N from N2 fixation was calculated using rates from this study and was found to be approximately 3% of total riverine loading of N to the NRE. Because N2 fixation occurs farther downstream and later in the year than riverine N loading to the NRE, there is potential for N2 fixation to modify N dynamics. Analyses of the phytoplankton community as a whole in these relatively short term experiments indicated that reduced DIN:DIP may not have a major impact on their structure and function.  相似文献   

14.
    
  1. Scientists know relatively little about the ecology of ephemeral aquatic habitats beyond the importance of hydroperiod and vertebrate predators, especially regarding trophic structure. We used playa wetlands, ephemeral habitats common in arid to semi‐arid regions, as our study ecosystem. We predicted that larger, more species‐rich playas would have food webs with larger dimensions (longer food chains and more energy sources used), more variation (more niches filled) and more redundancy (niche overlap).
  2. We used geometric properties of stable C and N isotope biplots to explore: (i) what regulates trophic structure in ephemeral wetlands, (ii) the role of anthropogenic forces in altering factors controlling trophic structure and (iii) how trophic structure in ephemeral systems differs from that typical of permanent systems.
  3. We sampled aquatic animal food webs of 21 playa wetlands located mostly in the short‐grass prairies of the Pawnee National Grassland in Colorado, U.S.A.
  4. Playas with higher insect diversity had more complex trophic structures than those dominated by large branchiopods (tadpole, clam and fairy shrimps). Insect diversity seemed dependent on length of the hydroperiod and time since filling, both of which are determined by playa depth. The key to understanding trophic structure in playas is an interaction between hydroperiod and the traits, lifespans and trophic niches of the species present.
  5. The trophic structure of naturally created playas was marginally more complex than artificial playas, and playas buffered by native vegetation were more likely to have food webs that included unique trophic strategies. Food webs of playas influenced by row crop agriculture had a broader selection of food sources. Playas grazed by cattle had food‐web structures comparable to those in ungrazed playas, suggesting that playa biota may be adapted to large mammal disturbances.
  6. The trophic structure of ephemeral aquatic habitats may not respond to disturbance in the same way as permanent systems. Indeed, food chain length in a playa can actually increase as the ephemeral ecosystem approaches the end of its hydroperiod.
  7. Measures of ecosystem size need to include more than the two dimensions of surface area when being applied to general ecological theory. Food webs increase in complexity with time, and many of the same factors that control trophic structure in ephemeral habitats could be important at least at some time in the life of a relatively permanent ecosystem.
  相似文献   

15.
    
  相似文献   

16.
    
Human and animal bones from the Pre-Pottery Neolithic B site of Nevali Cori (southeast Anatolia) were analyzed with regard to stable carbon and nitrogen isotopes in bone collagen, and stable carbon and oxygen isotopes in bone carbonate. The reconstruction of the vertebrate food web at this site revealed that humans may have faced difficulties with meat procurement, since their stable-isotope ratios reflect a largely herbivorous diet. This is in contrast with the preceding Pre-Pottery Neolithic A contexts and late Neolithic sites in the Fertile Crescent, where humans are located at the top of the food chain. Conceivably, Nevali Cori represents a community in the transition from a hunting and gathering subsistence to an economy with agriculture and animal husbandry, since domesticated einkorn and sheep, pigs, and probably also goats are in evidence at the site. In the second half of the 9th millennium calibrated (cal.) BC, however, the contribution of stock on the hoof to the human diet still seems modest. Animals kept under cultural control obviously had a dietary spectrum different from their free-ranging relatives. We conclude that these animals had been deliberately nourished by their owners, whereby the overall low delta(15)N-signatures in both humans and livestock might result from the consumption of protein-rich pulses.  相似文献   

17.
张丹  闵庆文  成升魁  王玉玉  杨海龙  何露 《生态学报》2010,30(24):6734-6740
稳定碳、氮同位素比值分析技术是研究生态系统中物质循环与能量流动的有效技术。δ13C值常用来分析消费者食物来源,δ15N值常用来确定生物在食物网中的营养位置。应用稳定同位素技术分析了稻-鱼(R-F)和稻-鱼-鸭(R-F-D)两种稻作方式下,稻田多个物种共存的食物网结构和营养级关系。结果表明,R-F中SOM的δ13C值为(-27.7±0.3)‰,与R-F-D(-27.4±0.4)‰,相差不大;R-F中POM的1δ3C值为(-27.4±0.8)‰,低于稻鱼鸭共生田(-26.7±0.5)‰;δ15N值计算发现R-F内浮游动物的营养级位置在2.24±0.16,鱼的营养级位置在3.07±0.26,均高于其在R-F-D内的营养级。在R-F-D内,由于鸭的引入,和R-F相比,鱼的营养级降低为2.63±0.13。  相似文献   

18.
Nitrogen fixation was investigated by means of the acetylene reduction method during the development of a water bloom of Nodularia in coastal waters of the Baltic Sea west of the island of Hiddensee and in backwaters showing different degrees of eutrophication. Depending on plankton density, the values found varied greatly. The maximum of nitrogen fixation values found in extremely dense water blooms under special conditions (Baltic Sea, 2250 μg N2/l · h; Kleiner Jasmunder Bodden, 374 μg N2/l · h) are up to 103 times higher than from other parts of the Baltic Sea or from inland waters. The average nitrogenase activity determined for coastal water populations of the Baltic Sea is 2.15 pg N2/heterocyst · h and that of the inmost backwaters 0.77 pg N2/heterocyst · h. The relationship between N2-fixation and nutrient content in water is discussed.  相似文献   

19.
Cyanobacteria are capable of producing multiple microcystin variants simultaneously. The mechanisms that determine the composition of microcystin variants in cyanobacteria are still debated. [Asp3]microcystin-RR contains arginine at the position where the more toxic [Asp3]microcystin-LR incorporates leucine. We cultured the filamentous cyanobacterium Planktothrix agardhii strain 126/3 with and without external addition of leucine and arginine. Addition of leucine to the growth medium resulted in a strong increase of the [Asp3]microcystin LR/RR ratio, while addition of arginine resulted in a decrease. This demonstrates that amino acid availability plays a role in the synthesis of different microcystin variants. Environmental changes affecting cell metabolism may cause differences in the intracellular availability of leucine and arginine, which can thus affect the production of microcystin variants. Because leucine contains one nitrogen atom while arginine contains four nitrogen atoms, we hypothesized that low nitrogen availability might shift the amino acid composition in favor of leucine, which might explain seasonal increases in the [Asp3]microcystin LR/RR ratio in natural populations. However, when a continuous culture of P. agardhii was shifted from nitrogen-saturated to a nitrogen-limited mineral medium, leucine and arginine concentrations decreased, but the leucine/arginine ratio did not change. Accordingly, while the total microcystin concentration of the cells decreased, we did not observe changes in the [Asp3]microcystin LR/RR ratio in response to nitrogen limitation.  相似文献   

20.
Summary 1. To examine spatial heterogeneity of trophic pathways on a small scale (<5 m diameter), we conducted dual stable isotope (δ13C and δ15N) analyses of invertebrate communities and their potential food sources in three patchy habitats [sphagnum lawn (SL), vascular‐plant carpet (VC) and sphagnum carpet] within a temperate bog (Mizorogaike Pond, Kyoto, Japan). 2. In total, 19 invertebrate taxa were collected from the three habitats, most of which were stenotopic, i.e. collected from a single habitat. Amongst the habitats, significant variation was observed in the isotopic signatures of dominant plant tissues and their detrital matter [benthic particulate organic matter (BPOM)], both of which were potential organic food sources for invertebrates. Site‐specific isotopic variation amongst detritivores was found in δ13C but not in δ15N, reflecting site‐specificity in the isotopic signatures of basal foods. The eurytopic hydrophilid beetle Helochares striatus was found in all habitats, but showed clear site variation in its isotopic signatures, suggesting that it strongly relies on foods within its own habitat. 3. The most promising potential foods for detritivores were the dead leaf stalks of a dominant plant in the VC and BPOM in the SL and carpet. An isotopic mixing model (IsoSource version 1.3.1) estimated that aquatic predators rely on unknown trophic sources with higher δ13C than detritus, whereas terrestrial predators forage on allochthonous as well as autochthonous prey, suggesting that the latter predators might play key roles in coupling between habitats. 4. Our stable isotope approach revealed that immobile detritivores are confined to their small patchy habitats but that heterogeneous trophic pathways can be coupled by mobile predators, stressing the importance of habitat heterogeneity and predator coupling in characterising food webs in bog ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号