首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncostatin M (OSM) is a pleiotropic cytokine within the interleukin six family of cytokines, which regulate cell growth and differentiation in a wide variety of biological systems. However, its action and underlying mechanisms on stem Leydig cell development are unclear. The objective of the present study was to investigate whether OSM affects the proliferation and differentiation of rat stem Leydig cells. We used a Leydig cell regeneration model in rat testis and a unique seminiferous tubule culture system after ethane dimethane sulfonate (EDS) treatment to assess the ability of OSM in the regulation of proliferation and differentiation of rat stem Leydig cells. Intratesticular injection of OSM (10 and 100 ng/testis) from post‐EDS day 14 to 28 blocked the regeneration of Leydig cells by reducing serum testosterone levels without affecting serum luteinizing hormone and follicle‐stimulating hormone levels. It also decreased the levels of Leydig cell‐specific mRNAs (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins by the RNA‐Seq and Western blotting analysis. OSM had no effect on the proliferative capacity of Leydig cells in vivo. In the seminiferous tubule culture system, OSM (0.1, 1, 10 and 100 ng/mL) inhibited the differentiation of stem Leydig cells by reducing medium testosterone levels and downregulating the expression of Leydig cell‐specific genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins. OSM‐mediated action was reversed by S3I‐201 (a STAT3 antagonist) or filgotinib (a JAK1 inhibitor). These data suggest that OSM is an inhibitory factor of rat stem Leydig cell development.  相似文献   

2.
The brain-derived neurotrophic factor (BDNF) was first recognized for its roles in the peripheral and central nervous systems, and its complex functions on mammalian organs have been extended constantly. However, to date, little is known about its effects on the male reproductive system, including the steroidogenesis of mammals. The purpose of this study was to elucidate the effects of BDNF on testosterone generation of Leydig cells and the underlying mechanisms. We found that BDNF-induced proliferation of TM3 Leydig cells via upregulation of proliferating cell nuclear antigen ( Pcna) and promoted testosterone generation as a result of upregulation of steroidogenic acute regulatory protein ( Star), 3b-hydroxysteroid dehydrogenase ( Hsd3b1), and cytochrome P450 side-chain cleavage enzyme ( Cyp11a1) both in primary Leydig cells and TM3 Leydig cells, which were all attenuated in Bdnf knockdown TM3 Leydig cells. Furthermore, the possible mechanism of testosterone synthesis was explored in TM3 Leydig cells. The results showed that BDNF enhanced extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation, and the effect was disrupted by Bdnf deletion. Moreover, PD98059, a potent selective inhibitor of ERK1/2 activation, compromised BDNF-induced testosterone generation and upregulation of Star, Hsd3b1, and Cyp11a1. The Bdnf knockdown assay, on the other hand, indicated the autocrine effect of BDNF on steroidogenesis in TM3 Leydig cells. On the basis of these results, we concluded that BDNF, acting as an autocrine factor, induced testosterone generation as a result of the upregulation of Star, Hsd3b1, and Cyp11a1 via stimulation of the ERK1/2 pathway.  相似文献   

3.

Background

Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established.

Methodology

Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3–30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity.

Results and Conclusions

In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In conclusion, etomidate directly inhibits the activities of CYP11A1 and HSD3B1, and the expression levels of Cyp11a1 and Hsd17b3, leading to the lower production of androgen by Leydig cells.  相似文献   

4.
Sertoli cells (SCs) are presumed to be the center of testis differentiation because they provide both structural support and biological regulation for spermatogenesis. Previous studies suggest that SCs control germ cell (GC) count and Leydig cell (LC) development in mouse testes. However, the regulatory role of SCs on peritubular myoid (PTM) cell fate in fetal testis has not been clearly reported. Here, we employed Amh‐Cre; diphtheria toxin fragment A (DTA) mouse model to selectively ablate SCs from embryonic day (E) 14.5. Results found that SC ablation in the fetal stage caused the disruption of testis cords and the massive loss of GCs. Furthermore, the number of α‐smooth muscle actin‐labeled PTM cells was gradually decreased from E14.5 and almost lost at E18.5 in SC ablation testis. Interestingly, some Ki67 and 3β‐HSD double‐positive fetal LCs could be observed in Amh‐Cre; DTA testes at E16.5 and E18.5. Consistent with this phenomenon, the messenger RNA levels of Hsd3b1, Cyp11a1, Lhr, Star and the protein levels of 3β‐HSD and P450Scc were significantly elevated by SC ablation. SC ablation appears to induce ectopic proliferation of fetal LCs although the total LC number appeared reduced. Together, these findings bring us a better understanding of SCs’ central role in fetal testis development.  相似文献   

5.
Fetal testis steroidogenesis plays an important role in the reproductive development of the male fetus. While regulators of certain aspects of steroidogenesis are known, the initial driver of steroidogenesis in the human and rodent fetal testis is unclear. Through comparative analysis of rodent fetal testis microarray datasets, 54 candidate fetal Leydig cell-specific genes were identified. Fetal mouse testis interstitial expression of a subset of these genes with unknown expression (Crhr1, Gramd1b, Itih5, Vgll3, and Vsnl1) was verified by whole-mount in situ hybridization. Among the candidate fetal Leydig cell-specific factors, three receptors (CRHR1, PRLR, and PROKR2) were tested for a steroidogenic function using ex vivo fetal testes treated with receptor agonists (CRH, PRL, and PROK2). While PRL and PROK2 had no effect, CRH, at low (approximately 1 to 10) nM concentration, increased expression of the steroidogenic genes Cyp11a1, Cyp17a1, Scarb1, and Star in GD15 mouse and GD17 rat testes, and in conjunction, testosterone production was increased. Exposure of GD15 fetal mouse testis to a specific CRHR1 antagonist blunted the CRH-induced steroidogenic gene expression and testosterone responses. Similar to ex vivo rodent fetal testes, ≥10 nM CRH exposure of MA-10 Leydig cells increased steroidogenic pathway mRNA and progesterone levels, showing CRH can enhance steroidogenesis by directly targeting Leydig cells. Crh mRNA expression was observed in rodent fetal hypothalamus, and CRH peptide was detected in rodent amniotic fluid. Together, these data provide a resource for discovering factors controlling fetal Leydig cell biology and suggest that CRHR1 activation by CRH stimulates rat and mouse fetal Leydig cell steroidogenesis in vivo.  相似文献   

6.
The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology.  相似文献   

7.
Epidermal growth factor (EGF) has many physiological roles. However, its effects on stem and progenitor Leydig cell development remain unclear. Rat stem and progenitor Leydig cells were cultured with different concentrations of EGF alone or in combination with EGF antagonist, erlotinib or cetuximab. EGF (1 and 10 ng/mL) stimulated the proliferation of stem Leydig cells on the surface of seminiferous tubules and isolated CD90+ stem Leydig cells and progenitor Leydig cells but it blocked their differentiation. EGF also exerted anti‐apoptotic effects of progenitor Leydig cells. Erlotinib and cetuximab are able to reverse EGF‐mediated action. Gene microarray and qPCR of EGF‐treated progenitor Leydig cells revealed that the down‐regulation of steroidogenesis‐related proteins (Star and Hsd3b1) and antioxidative genes. It was found that EGF acted as a proliferative agent via increasing phosphorylation of AKT1. In conclusion, EGF stimulates the proliferation of rat stem and progenitor Leydig cells but blocks their differentiation.  相似文献   

8.
Recently, Leydig cell (LC) transplantation has been revealed as a promising strategy for treating male hypogonadism; however, the key problem restricting the application of LC transplantation is a severe lack of seed cells. It seems that targeted activation of endogenous genes may provide a potential alternative. Therefore, the aim of this study was to determine whether targeted activation of Nr5a1, Gata4 and Dmrt1 (NGD) via the CRISPR/dCas9 synergistic activation mediator system could convert human foreskin fibroblasts (HFFs) into functional Leydig‐like cells. We first constructed the stable Hsd3b‐dCas9‐MPH‐HFF cell line using the Hsd3b‐EGFP, dCas9‐VP64 and MS2‐P65‐HSF1 lentiviral vectors and then infected it with single guide RNAs. Next, we evaluated the reprogrammed cells for their reprogramming efficiency, testosterone production characteristics and expression levels of Leydig steroidogenic markers by quantitative real‐time polymerase chain reaction or Western blotting. Our results showed that the reprogramming efficiency was close to 10% and that the reprogrammed Leydig‐like cells secreted testosterone rapidly and, more importantly, responded effectively to stimulation with human chorionic gonadotropin and expressed Leydig steroidogenic markers. Our findings demonstrate that simultaneous targeted activation of the endogenous NGD genes directly reprograms HFFs into functional Leydig‐like cells, providing an innovative technology that may have promising potential for the treatment of male androgen deficiency diseases.  相似文献   

9.

Background

11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) interconverts active 11β-hydroxyl glucocorticoids and inactive 11keto forms. However, its directionality is determined by availability of NADP+/NADPH. In liver cells, 11β-HSD1 behaves as a primary reductase, while in Leydig cells it acts as a primary oxidase. However, the exact mechanism is not clear. The direction of 11β-HSD1 has been proposed to be regulated by hexose-6-phosphate dehydrogenase (H6PDH), which catalyzes glucose-6-phosphate (G6P) to generate NADPH that drives 11β-HSD1 towards reduction.

Methodology

To examine the coupling between 11β-HSD1 and H6PDH, we added G6P to rat and human liver and testis or Leydig cell microsomes, and 11β-HSD1 activity was measured by radiometry.

Results and Conclusions

G6P stimulated 11β-HSD1 reductase activity in rat (3 fold) or human liver (1.5 fold), but not at all in testis. S3483, a G6P transporter inhibitor, reversed the G6P-mediated increases of 11β-HSD1 reductase activity. We compared the extent to which 11β-HSD1 in rat Leydig and liver cells might be coupled to H6PDH. In order to clarify the location of H6PDH within the testis, we used the Leydig cell toxicant ethane dimethanesulfonate (EDS) to selectively deplete Leydig cells. The depletion of Leydig cells eliminated Hsd11b1 (encoding 11β-HSD1) expression but did not affect the expression of H6pd (encoding H6PDH) and Slc37a4 (encoding G6P transporter). H6pd mRNA level and H6PDH activity were barely detectable in purified rat Leydig cells. In conclusion, the availability of H6PDH determines the different direction of 11β-HSD1 in liver and Leydig cells.  相似文献   

10.

Background

In the testis, thyroid hormone (T3) regulates the number of gametes produced through its action on Sertoli cell proliferation. However, the role of T3 in the regulation of steroidogenesis is still controversial.

Methods

The TRαAMI knock-in allele allows the generation of transgenic mice expressing a dominant-negative TRα1 (thyroid receptor α1) isoform restricted to specific target cells after Cre-loxP recombination. Here, we introduced this mutant allele in both Sertoli and Leydig cells using a novel aromatase-iCre (ARO-iCre) line that expresses Cre recombinase under control of the human Cyp19(IIa)/aromatase promoter.

Findings

We showed that loxP recombination induced by this ARO-iCre is restricted to male and female gonads, and is effective in Sertoli and Leydig cells, but not in germ cells. We compared this model with the previous introduction of TRαAMI specifically in Sertoli cells in order to investigate T3 regulation of steroidogenesis. We demonstrated that TRαAMI-ARO males exhibited increased testis weight, increased sperm reserve in adulthood correlated to an increased proliferative index at P3 in vivo, and a loss of T3-response in vitro. Nevertheless, TRαAMI-ARO males showed normal fertility. This phenotype is similar to TRαAMI-SC males. Importantly, plasma testosterone and luteinizing hormone levels, as well as mRNA levels of steroidogenesis enzymes StAR, Cyp11a1 and Cyp17a1 were not affected in TRαAMI-ARO.

Conclusions/Significance

We concluded that the presence of a mutant TRαAMI allele in both Leydig and Sertoli cells does not accentuate the phenotype in comparison with its presence in Sertoli cells only. This suggests that direct T3 regulation of steroidogenesis through TRα1 is moderate in Leydig cells, and that Sertoli cells are the main target of T3 action in the testis.  相似文献   

11.
Steroid hormones regulate differentiation of various types of cell during embryogenesis. Testosterone is one of the androgens that bind to receptors to regulate gene expression and promote spermatogenesis. Our results showed that testosterone, as a product of steroid hormones synthesis pathway, could facilitate the differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs). The analysis of the steroid hormones synthesis pathway demonstrated that 3beta‐hydroxysteroid dehydrogenase2 (Hsd3b2) plays a major role in the synthesis of testosterone. In the absence of Hsd3b2, the expression of downstream genes such as Cyp1a1, Ugt1a1, and Hsd17b7 was not maintained. This reduction is probably due to the down‐regulation of the steroid hormones synthesis pathway. Furthermore, qRT‐PCR, immunofluorescence, and flow cytometry analysis confirmed that the steroid hormones synthesis pathway could facilitate the differentiation of ESCs. Altogether, these results lead to a model in which Hsd3b2 regulates ESCs differentiation via modulating the activity of steroid hormones synthesis pathway.  相似文献   

12.
13.
14.
Two isoforms of 11β-hydroxysteroid dehydrogenase (11β-HSD1 and 11β-HSD2) play an important role in regulation of glucocorticoid corticosterone (CORT, the active form in rodents) by the interconversion between CORT and 11-dehydrocorticosterone (11DHC, the biologically inert form). 11β-HSD1 is an NADP+/NADPH-dependent oxidoreductase which is mainly expressed in liver and kidney, while 11β-HSD2 is an NAD+-dependent oxidase which is predominantly expressed in kidney. The regulation of 11β-HSD1 and 11β-HSD2 mRNA (Hsd11b1 and Hsd11b2) levels and their activities by IGF-1 was performed in liver, kidney, and testis of IGF-1 knockout male mice. Real-time PCR showed that Hsd11b1 in liver was decreased while Hsd11b2 mRNA level was decreased in kidney of IGF-1 null mice. 11β-HSD1 and 11β-HSD2 activities fluctuated with the changes of their respective Hsd11b1 or Hsd11b2 mRNA levels. In conclusion, IGF-I tissue-specifically regulates Hsd11b1 and Hsd11b2 expression.  相似文献   

15.
16.
17.

Background  

Leydig cells are the primary source of testosterone in male vertebrates. The biosynthesis of testosterone in Leydig cells is strictly dependent on luteinizing hormone (LH). On the other hand, it can be directly inhibited by excessive glucocorticoid (Corticosterone, CORT, in rats) which is beyond the protective capability of 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and type 2 (11beta-HSD2; encoded by gene Hsd11b2 in rats) in Leydig cells. Our previous study found that LH increases 11beta-HSD1 expression in rat Leydig cells, but the effect of LH on the expression and activity of 11beta-HSD2 is not investigated yet.  相似文献   

18.
19.
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.  相似文献   

20.
To determine the role of each estrogen receptor (ER) form (ERalpha, ERbeta) in mediating the estrogen actions necessary to maintain proper function of the hypothalamic-pituitary-gonadal axis, we have characterized the hypothalamic-pituitary-gonadal axis in female ER knockout (ERKO) mice. Evaluation of pituitary function included gene expression assays for Gnrhr, Cga, Lhb, Fshb, and Prl. Evaluation of ovarian steroidogenic capacity included gene expression assays for the components necessary for estradiol synthesis: i.e. Star, Cyp11a, Cyp17, Cyp19, Hsd3b1, and Hsd17b1. These data were corroborated by assessing plasma levels of the respective peptide and steroid hormones. alphaERKO and alphabetaERKO females exhibited increased pituitary Cga and Lhb expression and increased plasma LH levels, whereas both were normal in betaERKO. Pituitary Fshb expression and plasma FSH were normal in all three ERKOs. In the ovary, all three ERKOs exhibited normal expression of Star, Cyp11a, and Hsd3b1. In contrast, Cyp17 and Cyp19 expression were elevated in alphaERKO but normal in betaERKO and alphabetaERKO. Plasma steroid levels in each ERKO mirrored the steroidogenic enzyme expression, with only the alphaERKO exhibiting elevated androstenedione and estradiol. Elevated plasma testosterone in alphaERKO and alphabetaERKO females was attributable to aberrant expression of Hsd17b3 in the ovary, representing a form of endocrine sex reversal, as this enzyme is unique to the testes. Enhanced steroidogenic capacity in alphaERKO ovaries was erased by treatment with a GnRH antagonist, indicating these phenotypes to be the indirect result of excess LH stimulation that follows the loss of ERalpha in the hypothalamic-pituitary axis. Overall, these findings indicate that ERalpha, but not ERbeta, is indispensable to the negative-feedback effects of estradiol that maintain proper LH secretion from the pituitary. The subsequent hypergonadism is illustrated as increased Cyp17, Cyp19, Hsd17b1, and ectopic Hsd17b3 expression in the ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号