首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Long non‐coding RNAs (lncRNAs) widely participate in ESCC development and progression; however, the prognostic factors and therapeutic strategies implicated in ESCC development and progression remain to be under investigation. The purpose of the current study was to explore whether WDFY3‐AS2 may be a potential prognostic factor and investigate its biological functions in ESCC. Here, WDFY3‐AS2 was frequently down‐regulated in ESCC tissues and cells, and its expression was correlated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Moreover, WDFY3‐AS2 down‐regulation significantly promoted cell proliferation and invasion, whereas WDFY3‐AS2 up‐regulation markedly suppressed cell proliferation and invasion in ESCC EC9706 and TE1 cells, coupled with EMT phenotype alterations. WDFY3‐AS2 functioned as a competing endogenous RNA (ceRNA) for sponging miR‐2355‐5p, further resulted in the up‐regulation of its target gene SOCS2, followed by suppression of JAK2/Stat5 signalling pathway, to suppress ESCC cell proliferation and invasion in EC9706 and TE1 cells. These findings suggest that WDFY3‐AS2 may participate in ESCC development and progression, and may be a novel prognostic factor for ESCC patients, and thus targeting WDFY3‐AS2/miR‐2355‐5p/SOCS2 signalling axis may be a novel therapeutic strategy for ESCC patients.  相似文献   

4.
IQGAP1 is a scaffolding protein that can regulate several distinct signaling pathways. The accumulating evidence has demonstrated that IQGAP1 plays an important role in tumorigenesis and tumor progression. However, the function of IQGAP1 in esophageal squamous cell carcinoma (ESCC) has not been thoroughly investigated. In the present study, we showed that IQGAP1 was overexpressed in ESCC tumor tissues, and its overexpression was correlated with the invasion depth of ESCC. Importantly, by using RNA interference (RNAi) technology we successfully silenced IQGAP1 gene in two ESCC cell lines, EC9706 and KYSE150, and for the first time found that suppressing IQGAP1 expression not only obviously reduced the tumor cell growth, migration and invasion in vitro but also markedly inhibited the tumor growth, invasion, lymph node and lung metastasis in xenograft mice. Furthermore, Knockdown of IQGAP1 expression in ESCC cell lines led to a reversion of epithelial to mesenchymal transition (EMT) progress. These results suggest that IQGAP1 plays crucial roles in regulating ESCC occurrence and progression. IQGAP1 silencing may therefore develop into a promising novel anticancer therapy.  相似文献   

5.
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) regulate gene expression or activities. This study investigated the role of lncRNA LINC00551 in ESCC development and progression. Three paired ESCC and normal tissues were subjected to next‐generation sequencing and we identified 82 upregulated and 60 downregulated lncRNAs, including LINC00551, which was confirmed to markedly downregulated in 78 ESCC tissues and in the Gene Expression Profiling Interactive Analysis data set. Downregulated LINC00551 expression was associated with lymph node metastasis, advanced TNM stage, and tumor size. Moreover, downregulated LINC00551 expression was also associated with poor progression‐free survival and overall survival of ESCC patients. In vitro and in vivo, LINC00551 overexpression inhibited ESCC cell proliferation and invasion, whereas knockdown of LINC00551 expression promoted ESCC cell proliferation and invasion. RNA pull‐down and mass spectrometry assays identified the potential LINC00551 binding proteins, and HSP27 was a promising LINC00551 targeting proteins after RNA immunoprecipitation assay. At the protein level, LINC00551 bound to and decreased HSP27 phosphorylation, and in turn, downregulated ESCC cell proliferation and invasion. The current study demonstrated the functional significance of LINC00551 in ESCC development, progression, and prognosis. Further study will assess LINC00551 as a novel prognostic marker or therapeutic target for ESCC.  相似文献   

6.
β‐carotene, a type of terpenoid, has many metabolic and physiological functions. In particular, β‐carotene has an antitumor effect. However, the efficacy of β‐carotene against esophageal squamous cell carcinoma (ESCC) remains unclear. In our study, β‐carotene inhibited the growth of ESCC cells and downregulated expression of the Caveolin‐1 (Cav‐1) protein. Cav‐1 protein was expressed only in ESCC cells, not in Het‐1A cells. Moreover, β‐carotene triggered apoptosis, induced cell cycle G0?G1 phase arrest, and inhibited cell migration. To explore the mechanism involved in these processes, we further examined the effect of β‐carotene on the Cav‐1‐mediated AKT/NF‐κB pathway. The results showed that the level of AKT and NF‐κB phosphorylation was dramatically inhibited, which led to an increase in the Bax/Bcl‐2 ratio. Correspondingly, the activity of Caspase‐3 was also enhanced. These data suggest that β‐carotene has an antiproliferative role in ESCC cells and may be a promising chemotherapeutic agent for use against ESCC cells.  相似文献   

7.
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with low survival rate, so new therapies are urgently needed. Histone deacetylases (HDACs) play a critical role in tumorigenesis, and HDACs inhibition is a potential therapeutic target in ESSC. In our study, we evaluated the effect and molecular mechanism of MS-275 (an inhibitor of HDACs) on ESCC cells. We found that HDAC1 and HDAC2 were overexpressed in ESCC tissues and related with clinical pathological features of patients with ESCC. MS-275 markedly reduced HDAC1 and HDAC2 expression, whereas increased the level of AcH3 and AcH2B. MS-275 suppressed proliferation and clonogenicity of ESCC cells in a concentration-dependent manner. In addition, MS-275 induced apoptosis, arrested cell cycle, and inhibited migration, epithelial–mesenchymal transition, and sphere-forming ability of ESCC cells in vitro. Moreover, p-Akt1 and p-mTOR were downregulated by MS-275. Finally, MS-275 significantly inhibited tumor growth in vivo. Taken together, HDAC1 and HDAC2 are associated with the progression of ESCC, and MS-275 hinders the progression and stemness of ESCC cells by suppressing the PI3K/Akt/mTOR pathway. Our findings show that MS-275 inhibits ESCC cells growth in vitro and in vivo, which is a potential drug for the ESCC therapy.  相似文献   

8.
Gliomas are the commonest and most aggressive primary malignant tumor in the central nervous system. Long noncoding RNAs (lncRNAs) have been identified to act as crucial regulators in multiple biological processes, including tumorigenesis. FAM83H antisense RNA1 (FAM83H‐AS1) has been uncovered to be dysregulated in several cancers. However, the biological role of FAM83H‐AS1 in glioma still needs to be investigated. Currently, our findings indicated that FAM83H‐AS1 was upregulated in glioma tissues and cell lines and high level of FAM83H‐AS1 was associated with poor prognosis of glioma. Loss‐of‐function assays demonstrated that silenced FAM83H‐AS1 obviously suppressed cell proliferation via regulating the cell‐cycle distribution and cell apoptosis rate, and mechanistic experiments revealed that FAM83H‐AS1 could epidemically silence CDKN1A expression through recruiting EZH2 to the promoter of CDKN1A, thereby influencing the cell cycle and proliferation. Collectively, our findings suggested that FAM83H‐AS1 participated in the progression of glioma and might act as a potential therapeutic target and prognosis biomarker for human glioma.  相似文献   

9.
Increasing evidence has demonstrated that Ctr1 plays a crucial role in the regulation of cisplatin uptake in a variety of tumors. The purpose of this study was to investigate its role in mediating cisplatin sensitivity in ESCC cells. Immunohistochemistry (IHC), In situ hybridization (ISH) and semi-quantitative RT-PCR were used to detect Ctr1 expressions in ESCC tissues. qRT-PCR and Western blot was performed to investigate the levels of Ctr1 mRNA and protein in ESCC cells. CCK-8, Flow cytometry and Transwell chamber assay were carried out to examine cell proliferation, apoptosis, migration and invasion abilities in ESCC cells. We found that ESCC tissues and cells had higher Ctr1 level than normal tissues and Het-1A cell. Ctr1 expression was correlated with histological grade, invasion depth, TNM staging and lymph node metastasis in ESCC patients. Ctr1 depletion reduced the suppressive role of proliferation, migration and invasion as well as the inductive role of cell apoptosis and Caspase-3 activity evoked by cisplatin, whereas Ctr1 upregulation combined with cisplatin exerted the synergistic role in regulation of proliferation, apoptosis, Caspase-3 activity, migration and invasion in ESCC. In conclusion, Ctr1 is implicated in ESCC development and progression and its expression may be a novel predictor for assessment of cisplatin sensitivity in ESCC.  相似文献   

10.
11.
The cysteine‐rich lysosomal protein placenta‐specific 8 (PLAC8), also called onzin, has been shown to be involved in many types of cancers, and its role is highly dependent on cellular and physiological contexts. However, the precise function of PLAC8 in breast cancer (BC) progression remains unclear. In this study, we investigated both the clinical significance and biological functions of PLAC8 in BC progression. First, high PLAC8 expression was observed in primary BC tissues compared with adjacent normal tissues through immunohistochemistry analysis. The results of in vitro and in vivo assays further confirmed that PLAC8 overexpression promotes cell proliferation and suppress BC cell apoptosis, whereas PLAC8 silencing has the opposite effect. In addition, the forced expression of PLAC8 greatly induces cell migration, partially by affecting the EMT‐related genes, including down‐regulating E‐cadherin expression and facilitating vimentin expression. Further mechanistic analysis confirmed that PLAC8 contributes to cell proliferation and suppresses cell apoptosis in BC by activating the PI3K/AKT/NF‐κB pathway. The results of our study provide new insights into an oncogenic role of PLAC8 and reveal a novel PLAC8/ PI3K/AKT/NF‐κB pathway as a potential therapeutic target for BC.  相似文献   

12.
13.
It is increasingly evident that the molecular and biological functions of long non‐coding RNAs (lncRNA) are vital for understanding the molecular biology and progression of cancer. The lncRNA‐HEIH, a newly identified lncRNA, has been demonstrated to be up‐regulated in hepatocellular cancer. However, little is known about its role in oesophageal squamous cell carcinoma (ESCC). In the present study, an obvious up‐regulation of lncRNA‐HEIH was observed in ESCC compared to the adjacent normal tissues. Meanwhile, patients with high expression of lncRNA‐HEIH have significantly poorer prognosis than those with low expression. We further found that lncRNA‐HEIH was associated with enhancer of zeste homolog 2 (EZH2) and that this association led to the repression of TP53. These findings indicate that lncRNA‐HEIH may serve as a prognostic marker and a potential therapeutic target for ESCC.  相似文献   

14.
Periostin (POSTN) is a matricellular protein that was originally identified in osteoblasts. Past studies have shown that POSTN is also preferentially expressed in cancer-associated fibroblasts (CAFs) in various types of cancer. We previously demonstrated that the increased expression of POSTN in stromal tissues is associated with an unfavorable clinical outcome in esophageal squamous cell carcinoma (ESCC) patients. In this study, we aimed to elucidate the role of POSNT in ESCC progression and its underlying molecular mechanism. We found that POSTN is predominantly produced by CAFs in ESCC tissues, and that CAFs-cultured media significantly promoted the migration, invasion, proliferation, and colony formation of ESCC cell lines in a POSTN-dependent manner. In ESCC cells, POSTN increased the phosphorylation of ERK1/2 and stimulated the expression and activity of a disintegrin and metalloproteinase 17 (ADAM17), which is critically involved in tumorigenesis and tumor progression. The effects of POSTN on ESCC cells were suppressed by interfering with the binding of POSTN to integrin αvβ3 or αvβ5 using neutralizing antibody against POSTN. Taken together, our data show that CAFs-derived POSTN stimulates ADAM17 activity through activation of the integrin αvβ3 or αvβ5-ERK1/2 pathway and thereby contributes to the progression of ESCC.  相似文献   

15.
Multiple studies have unveiled that long non‐coding RNAs (lncRNAs) play a pivotal role in tumour progression and metastasis. However, the biological role of lncRNA ZEB1‐AS1 in oesophageal squamous cell carcinoma (ESCC) remains under investigation, and thus, the current study was to investigate the functions of ZEB1‐AS1 in proliferation and invasion of ESCC. Here, we discovered that ZEB1‐AS1 and ZEB1 were markedly up‐regulated in ESCC tissues and cells relative to their corresponding normal control. ZEB1‐AS1 and ZEB1 overexpressions were both related to TNM staging and lymph node metastasis as well as poor prognosis in ESCC. The hypomethylation of ZEB1‐AS1 promoter triggered ZEB1‐AS1 overexpression in ESCC tissues and cells. In addition, ZEB1‐AS1 knockdown mediated by siRNA markedly suppressed the proliferation and invasion in vitro in EC9706 and TE1 cells, which was similar with ZEB1 siRNA treatment, coupled with EMT alterations including the up‐regulation of E‐cadherin level as well as the down‐regulation of N‐cadherin and vimentin levels. Notably, ZEB1‐AS1 depletion dramatically down‐regulated ZEB1 expression in EC9706 and TE1 cells, and ZEB1 overexpression obviously reversed the inhibitory effects of proliferation and invasion triggered by ZEB1‐AS1 siRNA. ZEB1‐AS1 shRNA evidently inhibited tumour growth and weight, whereas ZEB1 elevation partly recovered the tumour growth in ESCC EC9706 and TE1 xenografted nude mice. In conclusion, ZEB1‐AS1 overexpression is tightly involved in the development and progression of ESCC, and it exerts the antitumour efficacy by regulating ZEB1 level in ESCC.  相似文献   

16.
Lung cancer is the most frequent cancer type and is the leading cause of tumour‐associated deaths worldwide. Nuclear cap‐binding protein 1 (NCBP1) is necessary for capped RNA processing and intracellular localization. It has been reported that silencing of NCBP1 resulted in cell growth reduction in HeLa cells. Nevertheless, its clinical significance and underlying molecular mechanisms in non–small‐cell lung cancer remain unclear. In this study, we found that NCBP1 was significantly overexpressed in lung cancer tissues and several lung cancer cell lines. Through knockdown and overexpression experiments, we showed that NCBP1 promoted lung cancer cell growth, wound healing ability, migration and epithelial‐mesenchymal transition. Mechanistically, we found that cullin 4B (CUL4B) was a downstream target gene of NCBP1 in NSCLC. NCBP1 up‐regulated CUL4B expression via interaction with nuclear cap‐binding protein 3 (NCBP3). CUL4B silencing significantly reversed NCBP1‐induced tumorigenesis in vitro. Based on these findings, we propose a model involving the NCBP1‐NCBP3‐CUL4B oncoprotein axis, providing novel insight into how CUL4B is activated and contributes to LUAD progression.  相似文献   

17.
Circ-Foxo3 is a circRNA encoded by the human FOXO3 gene and works as a sponge for potential microRNAs (miRNAs) to regulate cancer progression. However, the role of circ-Foxo3 in esophageal squamous cell cancer (ESCC) is not clear. In this study, circ-Foxo3 was lowly expressed in cell lines and ESCC tissues. Meanwhile, overexpression of circ-Foxo3 inhibited cell growth, migration, and invasion, whether in vivo or in vitro. Mechanically, we found a potential miRNA target, miR-23a, which negatively correlated with circ-Foxo3 in ESCC. Then, a luciferase assay confirmed the relationship between the circ-Foxo3 and miRNA. Moreover, circ-Foxo3 upregulation of PTEN occurred through “sponging” miR-23a. Taken together, these results indicated that the circ-Foxo3/miR-23a/PTEN pathway was critical for inhibiting the ESCC progression. This may provide a promising target for treat ESCC.  相似文献   

18.
Previous study has demonstrated that high mobility group nucleosome‐binding domain 5 (HMGN5) is involved in tumorigenesis and the development of multidrug resistance in several human cancers. However, the role of HMGN5 in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we showed that HMGN5 was significantly upregulated in ESCC cells. Knockdown of HMGN5 significantly inhibited cell growth and induced cell apoptosis of ESCC cells. Moreover, knockdown of HMGN5 increased the sensitivity of ESCC cells towards cisplatin. By contrast, overexpression of HMGN5 showed the opposite effects. Further experiments demonstrated that HMGN5 regulated the expression of multidrug resistance 1, cyclin B1, and Bcl‐2. Overall, our results reveal that HMGN5 promotes tumor progression of ESCC and is also an important regulator of chemoresistance. Our study suggests that inhibition of HMGN5 may be a potential strategy for improving effectiveness of ESCC treatment.  相似文献   

19.
目的:探索长链非编码RNA BANCR与食管鳞癌(esophageal squamous cell carcinoma ESCC)临床病理特征以及预后的关系,以及对于ESCC细胞增殖,迁移和侵袭能力的影响。方法:使用实时荧光定量PCR(q RT-PCR)技术检测ESCC组织及多个细胞系中BANCR的表达水平,分析其与临床病理特征及预后的关联,用小干扰RNA(si RNA)干扰BANCR后用CCK8法检测其对ESCC细胞生长的影响,使用transwell法检测对细胞侵袭和转移能力的影响。结果:相对于癌旁组织,有86%(123/142)的癌组织中BANCR表达量升高,BANCR在癌组织中的相对表达水平与肿瘤的组织学分级、TNM分期和淋巴结转移数量相关(P均0.05)。BANCR在本文涉及的八株ESCC细胞中的表达量均高于正常食管上皮细胞(Het1A)。在TE10和KYSE30细胞中敲降BANCR后可明显降低细胞生长速率,并抑制细胞的侵袭和迁移能力(P0.01)。结论:BANCR在ESCC组织和细胞中表达显著上调。并能增强ESCC细胞的增殖和侵袭能力,有希望成为一种新的辅助ESCC早期诊断和预后判断的肿瘤分子标志物。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号