首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   

2.
A multitude of disturbance agents, such as wildfires, land use, and climate‐driven expansion of woody shrubs, is transforming the distribution of plant functional types across Arctic–Boreal ecosystems, which has significant implications for interactions and feedbacks between terrestrial ecosystems and climate in the northern high‐latitude. However, because the spatial resolution of existing land cover datasets is too coarse, large‐scale land cover changes in the Arctic–Boreal region (ABR) have been poorly characterized. Here, we use 31 years (1984–2014) of moderate spatial resolution (30 m) satellite imagery over a region spanning 4.7 × 106 km2 in Alaska and northwestern Canada to characterize regional‐scale ABR land cover changes. We find that 13.6 ± 1.3% of the domain has changed, primarily via two major modes of transformation: (a) simultaneous disturbance‐driven decreases in Evergreen Forest area (?14.7 ± 3.0% relative to 1984) and increases in Deciduous Forest area (+14.8 ± 5.2%) in the Boreal biome; and (b) climate‐driven expansion of Herbaceous and Shrub vegetation (+7.4 ± 2.0%) in the Arctic biome. By using time series of 30 m imagery, we characterize dynamics in forest and shrub cover occurring at relatively short spatial scales (hundreds of meters) due to fires, harvest, and climate‐induced growth that are not observable in coarse spatial resolution (e.g., 500 m or greater pixel size) imagery. Wildfires caused most of Evergreen Forest Loss and Evergreen Forest Gain and substantial areas of Deciduous Forest Gain. Extensive shifts in the distribution of plant functional types at multiple spatial scales are consistent with observations of increased atmospheric CO2 seasonality and ecosystem productivity at northern high‐latitudes and signal continental‐scale shifts in the structure and function of northern high‐latitude ecosystems in response to climate change.  相似文献   

3.
Many areas of the Arctic are simultaneously affected by rapid climate change and rapid industrial development. These areas are likely to increase in number and size as sea ice melts and abundant Arctic natural resources become more accessible. Documenting the changes that have already occurred is essential to inform management approaches to minimize the impacts of future activities. Here, we determine the cumulative geoecological effects of 62 years (1949–2011) of infrastructure‐ and climate‐related changes in the Prudhoe Bay Oilfield, the oldest and most extensive industrial complex in the Arctic, and an area with extensive ice‐rich permafrost that is extraordinarily sensitive to climate change. We demonstrate that thermokarst has recently affected broad areas of the entire region, and that a sudden increase in the area affected began shortly after 1990 corresponding to a rapid rise in regional summer air temperatures and related permafrost temperatures. We also present a conceptual model that describes how infrastructure‐related factors, including road dust and roadside flooding are contributing to more extensive thermokarst in areas adjacent to roads and gravel pads. We mapped the historical infrastructure changes for the Alaska North Slope oilfields for 10 dates from the initial oil discovery in 1968–2011. By 2010, over 34% of the intensively mapped area was affected by oil development. In addition, between 1990 and 2001, coincident with strong atmospheric warming during the 1990s, 19% of the remaining natural landscapes (excluding areas covered by infrastructure, lakes and river floodplains) exhibited expansion of thermokarst features resulting in more abundant small ponds, greater microrelief, more active lakeshore erosion and increased landscape and habitat heterogeneity. This transition to a new geoecological regime will have impacts to wildlife habitat, local residents and industry.  相似文献   

4.
Damage due to wind‐storms and droughts is increasing in many temperate forests, yet little is known about the long‐term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind‐storms on adult tree mortality across a 31‐year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind‐storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave‐one‐out cross‐validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind‐storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms?1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind‐loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind‐storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these ecological interactions could also change.  相似文献   

5.
The study of environmental conditions is one of the most important measures in the field of reforestation. The present study was undertaken to assess the environmental status of the mangrove forest of Alibaug, Maharashtra, India with respect to different sixteen physicochemical parameters of water using Geographical information system (GIS) for rehabilitation, conservation and development of the destructed area of the mangrove forest. The Base map of study area was prepared using topographic map and the remote sensing data of Landsat 7 ETM + for spatial analysis. The distributions of water pollutants were assigned using a GIS approach of Inverse Distance Weighted (IDW). The results showed that the amounts of EC, COD, hardness, O&G, Cl?, Na+, Ca2 +, Mg2 +, NO3? and PO43? are higher than the normal ranges in mangrove forest due to natural processes and human activity, industrial and domestic wastewater disposal, oil spillage and agricultural runoff which all eventually affect the water quality of mangrove forest of Alibaug. To identify the areas within the normal ranges of 16 studied parameter, suitability map of water was prepared through an integration of 16 suitability maps of the studied parameters. The suitability map of water classified the water to six classes of suitability in order of moderate > moderate to high > low to moderate > high > low suitable. The areas with classes of 1 and 2 were suitable for the protective measures. Classes 3 and 4 were suitable for replantation and restoration of native mangrove species as well as local communities' cooperation in the participatory protection measures. The areas of classes 5 and 0 need to be designed an urgent management and mitigation plan to reduce impact of human activities. The result of the study also proves the use of GIS as a powerful tool in addressing assessment and monitoring programs of the water quality in the mangrove ecosystems.  相似文献   

6.
Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time‐series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life‐history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time‐series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations appear buffered at present from potential deleterious effects of climate change by other ecological forces.  相似文献   

7.

Aims

The encroachment of tree and shrub species in high mountains is an increasing worldwide phenomenon, which is expected to dramatically alter high‐mountain ecosystems and their functioning. Moreover it indicates in some cases a reforestation process, which will result in important ecological and social benefits, including carbon sequestration and protection against landslides. We therefore examined the spatial extent of forest growth and shrub encroachment mainly of birch (Betula litwinowii) in the sub‐alpine belt of the Central Greater Caucasus between 1987 and 2010 and its relation to topographic site conditions.

Location

Kazbegi district, Central Greater Caucasus, Georgia.

Methods

We analysed 155 vegetation relevés sampled in 2009, 2011 and 2015, mainly derived from the Caucasus Vegetation Database, to obtain information about topographic site conditions and structure of B. litwinowii stands. B. litwinowii forest growth was assessed by digitizing the forest outlines from aerial and space‐borne imagery (1987, 2005 and 2010). To identify areas of B. litwinowii encroachment as an indicator for different encroachment stages, we modelled the tree and shrub cover using the Random Forest algorithm.

Results

We found four types of B. litwinowii stands, characterized by different tree and shrub coverage (initial Bromus variegatus–Betula litwinowii encroachment indicating the first stage of succession, Aconitum nasutum–Betula litwinowii forest, Rubus idaeus–Betula litwinowii forest and Rhododendron caucasicum–Betula litwinowii tree line scrubs). B. litwinowii forest increased 25% compared to 1987 mainly in an uphill direction. Furthermore the modelled tree and shrub cover (R2 = .69) could be related to the four vegetation types.

Conclusions

Our results indicate a recent trend towards shrub encroachment and consequently reforestation in the Kazbegi region.  相似文献   

8.
The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait‐based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the functioning of the ecosystems. Our mechanistic understanding of and ability to predict community change is still impeded by the lack of knowledge in long‐term functional dynamics that span several trophic levels. To address this, we assessed species richness and multiple dimensions of functional diversity and dynamics of two interacting key organism groups in the marine food web: fish and zoobenthos. We utilized unique time series‐data spanning four decades, from three environmentally distinct coastal areas in the Baltic Sea, and assembled trait information on six traits per organism group covering aspects of feeding, living habit, reproduction and life history. We identified gradual long‐term trends, rather than abrupt changes in functional diversity (trait richness, evenness, dispersion) trait turnover, and overall multi‐trait community composition. The linkage between fish and zoobenthic functional community change, in terms of correlation in long‐term trends, was weak, with timing of changes being area and trophic group specific. Developments of fish and zoobenthos traits, particularly size (increase in small size for both groups) and feeding habits (e.g. increase in generalist feeding for fish and scavenging or predation for zoobenthos), suggest changes in trophic pathways. We summarize our findings by highlighting three key aspects for understanding functional change across trophic groups: (a) decoupling of species from trait richness, (b) decoupling of richness from density and (c) determining of turnover and multi‐trait dynamics. We therefore argue for quantifying change in multiple functional measures to help assessments of biodiversity change move beyond taxonomy and single trophic groups.  相似文献   

9.
Long‐term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999–2017 from a 120‐year‐old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long‐term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long‐term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two‐factor linear models combining CO2 concentration and air temperature performed well (R2~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long‐term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the ‘CO2 fertilization effect’ on long‐term variations in RUEs. Since most RUE‐based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE‐based modeling of C fluxes.  相似文献   

10.
Understanding population change is essential for conservation of imperiled species, such as amphibians. Worldwide amphibian declines have provided an impetus for investigating their population dynamics, which can involve both extrinsic (density‐independent) and intrinsic (density‐dependent) drivers acting differentially across multiple life stages or age classes. In this study, we examined the population dynamics of the endangered Barton Springs Salamander (Eurycea sosorum) using data from a long‐term monitoring program. We were interested in understanding both the potential environmental drivers (density‐independent factors) and demographic factors (interactions among size classes, negative density dependence) to better inform conservation and management activities. We used data from three different monitoring regimes and multivariate autoregressive state‐space models to quantify environmental effects (seasonality, discharge, algae, and sediment cover), intraspecific interactions among three size classes, and intra‐class density dependence. Results from our primary data set revealed similar patterns among sites and size classes and were corroborated by our out‐of‐sample data. Cross‐correlation analysis showed juvenile abundance was most strongly correlated with a 9‐month lag in aquifer discharge, which we suspect is related to inputs of organic carbon into the aquifer. However, sedimentation limited juvenile abundance at the surface, emphasizing the importance of continued sediment management. Recruitment from juveniles to the sub‐adult size class was evident, but negative density‐dependent feedback ultimately regulated each size class. Negative density dependence may be an encouraging sign for the conservation of E. sosorum because populations that can reach carrying capacity are less likely to go extinct compared to unregulated populations far below their carrying capacity. However, periodic population declines coupled with apparent migration into the aquifer complicate assessments of species status. Although both density‐dependent and density‐independent drivers of population change are not always apparent in time series of animal populations, both have important implications for conservation and management of E. sosorum.  相似文献   

11.
Climate change is shifting species’ distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species’ responses across different studies be limited to studies with similar methodological approaches; (3) meta‐analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species’ distribution and phenology changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号