首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of plasma incubation from preeclampsia pregnant on the antiangiogenic miR‐195‐5p expression. Higher miR‐195‐5p expression was found in cultures incubated with preeclampsia plasma compared to those incubated with healthy pregnant plasma. Next, as VEGF is a target of miR‐195‐5p we have quantified its expression by real‐time qPCR and ELISA. We found reduced VEGF levels in culture incubated with preeclampsia plasma. Therefore, we have concluded that the higher expression of miR‐195‐5p in endothelial cell cultures incubated with preeclampsia plasma may contribute to decreased expression of VEGFA (gene and protein) and increased antiangiogenic status in preeclampsia. Therefore, this miR may be an important target in preeclampsia.  相似文献   

2.
During differentiation and development cells undergo dramatic morphological and functional changes without any change in the DNA sequence. The underlying changes of gene expression patterns are established and maintained by epigenetic processes. Early mechanistic insights came from the observation that gene activity and repression states correlate with the DNA methylation level of their promoter region. DNA methylation is a postreplicative modification that occurs exclusively at the C5 position of cytosine residues (5mC) and predominantly in the context of CpG dinucleotides in vertebrate cells. Here, three major DNA methyltransferases (Dnmt1, 3a, and 3b) establish specific DNA methylation patterns during differentiation and maintain them over many cell division cycles. CpG methylation is recognized by at least three protein families that in turn recruit histone modifying and chromatin remodeling enzymes and thus translate DNA methylation into repressive chromatin structures. By now a multitude of histone modifications have been linked in various ways with DNA methylation. We will discuss some of the basic connections and the emerging complexity of these regulatory networks. J. Cell. Biochem. 108: 43–51, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Pre‐eclampsia (PE) is a life‐threatening multisystem disorder leading to maternal and neonatal mortality and morbidity. Emerging evidence showed that activation of the complement system is implicated in the pathological processes of PE. However, little is known about the detailed cellular and molecular mechanism of complement activation in the development of PE. In this study, we reported that complement 5a (C5a) plays a pivotal role in aberrant placentation, which is essential for the onset of PE. We detected an elevated C5a deposition in macrophages and C5a receptor (C5aR) expression in trophoblasts of pre‐eclamptic placentas. Further study showed that C5a stimulated trophoblasts towards an anti‐angiogenic phenotype by mediating the imbalance of angiogenic factors such as soluble fms‐like tyrosine kinase 1 (sFlt1) and placental growth factor (PIGF). Additionally, C5a inhibited the migration and tube formation of trophoblasts, while, C5aR knockdown with siRNA rescued migration and tube formation abilities. We also found that maternal C5a serum level was increased in women with PE and was positively correlated with maternal blood pressure and arterial stiffness. These results demonstrated that the placental C5a/C5aR pathway contributed to the development of PE by regulating placental trophoblasts dysfunctions, suggesting that C5a may be a novel therapeutic possibility for the disease.  相似文献   

4.
Pre‐eclampsia (PE) is one of the most severe syndromes in human pregnancy, and the underlying mechanisms of PE have yet to be determined. Pre‐eclampsia is characterized by the alteration of the immune system's activation status, an increase in inflammatory Th1/Th17/APC cells, and a decrease in Th2/Treg subsets/cytokines. Moreover, inflammatory infiltrates have been detected in the amniotic membranes of pre‐eclamptic placentae, and to this date limited data are available regarding the role of amniotic membrane cells in PE. Interestingly, we and others have previously shown that human amniotic mesenchymal stromal cells (hAMSC) possess anti‐inflammatory properties towards almost all immune cells described to be altered in PE. In this study we investigated whether the immunomodulatory properties of hAMSC were altered in PE. We performed a comprehensive study of cell phenotype and investigated the in vitro immunomodulatory properties of hAMSC isolated from pre‐eclamptic pregnancies (PE‐hAMSC), comparing them to hAMSC from normal pregnancies (N‐hAMSC). We demonstrate that PE‐hAMSC inhibit CD4/CD8 T‐cell proliferation, suppress Th1/Th2/Th17 polarization, induce Treg and block dendritic cells and M1 differentiation switching them to M2 cells. Notably, PE‐hAMSC generated a more prominent induction of Treg and higher suppression of interferon‐γ when compared to N‐hAMSC, and this was associated with higher transforming growth factor‐β1 secretion and PD‐L2/PD‐L1 expression in PE‐hAMSC. In conclusion, for the first time we demonstrate that there is no intrinsic impairment of the immunomodulatory features of PE‐hAMSC. Our results suggest that amniotic mesenchymal stromal cells do not contribute to the disease, but conversely, could participate in offsetting the inflammatory environment which characterizes PE.  相似文献   

5.
Successful pregnancy depends on the precise regulation of extravillous trophoblast cell invasion ability. MicroRNA‐210‐3p (miR‐210), which is increased in the placenta of pre‐eclampsia. Furthermore, miR‐210 could inhibit trophoblasts invasion and might act as a serum biomarker for pre‐eclampsia. Previous studies have demonstrated that miR‐210 regulates HUVEC (human umbilical vein endothelial cell)‐mediated angiogenesis by regulating the NOTCH1 signaling pathway. Studies by our group have previously identified that NOTCH1 plays a positive role in regulating trophoblast functions. However, the miR‐210/NOTCH1 signaling pathway in the regulation of trophoblasts and pre‐eclampsia has not been characterized. Therefore, this study was conducted to investigate the role of miR‐210 and its relationship with NOTCH1 in trophoblasts. We first examined the expression levels of miR‐210 and NOTCH1 in pre‐eclamptic and normals placentas. Next, the expression and location of miR‐210 and NOTCH1 in the first‐trimester villi, maternal decidua, and placenta of late pregnancy were shown via in situ hybridization and immunohistochemistry. The trophoblast cell line HTR‐8/SVneo was used to investigate the effects of miR‐210 on the expression of NOTCH1 and cell bioactivity by upregulation and downregulation strategies. The results showed that miR‐210 expression was increased, whereas NOTCH1 expression was decreased in pre‐eclamptic placenta compared with controls. Upregulation of miR‐210 decreased NOTCH1 expression, impaired HTR‐8/SVneo proliferation, migration, invasion, and tube‐like formation capabilities, and promoted apoptosis. In contrast, downregulation of miR‐210 resulted in the opposite effects. These findings suggested that miR‐210 might act as a contributor to trophoblast dysfunction by attenuating NOTCH1 expression.  相似文献   

6.
Age structure is a fundamental aspect of animal population biology. Age is strongly related to individual physiological condition, reproductive potential and mortality rate. Currently, there are no robust molecular methods for age estimation in birds. Instead, individuals must be ringed as chicks to establish known‐age populations, which is a labour‐intensive and expensive process. The estimation of chronological age using DNA methylation (DNAm) is emerging as a robust approach in mammals including humans, mice and some non‐model species. Here, we quantified DNAm in whole blood samples from a total of 71 known‐age Short‐tailed shearwaters (Ardenna tenuirostris) using digital restriction enzyme analysis of methylation (DREAM). The DREAM method measures DNAm levels at thousands of CpG dinucleotides throughout the genome. We identified seven CpG sites with DNAm levels that correlated with age. A model based on these relationships estimated age with a mean difference of 2.8 years to known age, based on validation estimates from models created by repeated sampling of training and validation data subsets. Longitudinal observation of individuals re‐sampled over 1 or 2 years generally showed an increase in estimated age (6/7 cases). For the first time, we have shown that epigenetic changes with age can be detected in a wild bird. This approach should be of broad interest to researchers studying age biomarkers in non‐model species and will allow identification of markers that can be assessed using targeted techniques for accurate age estimation in large population studies.  相似文献   

7.
Impairment spiral arteries remodelling was considered to be the underlying cause of pathogenesis of pre‐eclampsia (PE). Resveratrol (RE) was reported that it could modulate cellar phenotype to ameliorate diverse human diseases. However, the biological function of RE in PE remains poorly understood. In this report, we investigated the effect of RE on trophoblast phenotype both in vivo and in vitro. We conducted MTT and transwell assays to explore cell proliferation and invasion events in HTR‐8/SVneo. In mice model, the clinical characteristics of PE were established through the injection of NG‐nitro‐l ‐arginine methyl ester (L‐NAME). Furthermore, related experiments were performed to detect cellar phenotype‐associated signalling pathway, including epithelial‐mesenchymal transition (EMT) and Wnt/β‐catenin. Cell assays indicated that RE could increase trophoblasts migration and invasion. In addition, hypertension and proteinuria were markedly ameliorated by RE compared with the controls in PE mice model. Moreover, treatment by RE in trophoblasts or in PE model, we found that RE activated EMT progress through the regulation of E‐cadherin, β‐catenin, N‐cadherin, vimentin expression, and further altered the WNT‐related gene expression, including WNT1, WNT3 and WNT5B. Our findings demonstrated that RE might stimulate the invasive capability of human trophoblasts by promoting EMT and mediating the Wnt/β‐catenin pathway in PE.  相似文献   

8.
9.
Genetic variants have potential influence on DNA methylation and thereby regulate mRNA expression. This study aimed to comprehensively reveal the relationships among SNP, methylation and mRNA, and identify methylation‐mediated regulation patterns in human peripheral blood mononuclear cells (PBMCs). Based on in‐house multi‐omics datasets from 43 Chinese Han female subjects, genome‐wide association trios were constructed by simultaneously testing the following three association pairs: SNP‐methylation, methylation‐mRNA and SNP‐mRNA. Causal inference test (CIT) was used to identify methylation‐mediated genetic effects on mRNA. A total of 64,184 significant cis‐methylation quantitative trait loci (meQTLs) were identified (FDR < 0.05). Among the 745 constructed trios, 464 trios formed SNP‐methylation‐mRNA regulation chains (CIT). Network analysis (Cytoscape 3.3.0) constructed multiple complex regulation networks among SNP, methylation and mRNA (eg a total of 43 SNPs simultaneously connected to cg22517527 and further to PRMT2, DIP2A and YBEY). The regulation chains were supported by the evidence from 4DGenome database, relevant to immune or inflammatory related diseases/traits, and overlapped with previous eQTLs from dbGaP and GTEx. The results provide new insights into the regulation patterns among SNP, DNA methylation and mRNA expression, especially for the methylation‐mediated effects, and also increase our understanding of functional mechanisms underlying the established associations.  相似文献   

10.
Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal‐contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation‐sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal‐contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal‐contaminated site compared to uncontaminated populations. Other genotypes from a different metal‐contaminated site within the same region appear to be recalcitrant to metal‐induced DNA alterations even ≥30 years of tree life exposure to nickel and copper . MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal‐contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed.  相似文献   

11.
12.
This study is aimed to investigate the methylation level of candidate genes and its impact on thyroid carcinoma (THCA) development. Infinium Human Methylation 450 BeadChip Arrays by Illumina (Illumina HM450K) was the most popular CpG microarray platform widely used in biological and medical research. The methylation level of differentially expressed genes and their corresponding CpG sites were analysed by R programme. The expression of HORMAD2 was evaluated by qRT‐PCR and Western blot, while the methylation level was examined via methylation‐specific PCR. Cell viability, metastasis, cell cycle and apoptosis were detected by MTT assay, transwell and wound healing assay and flow cytometry, respectively, after treatment with 5‐aza‐2′‐deoxycytidine (5‐Aza). Tumour formation assay was used to analyse thyroid tumour growth in nude mice in vivo. The methylation levels of all 116 differentially expressed genes were analysed. HORMAD2 was significantly hypermethylated and its mRNA expression was inhibited in THCA cells. After treatment with 5‐Aza, HORMAD2 expression was up‐regulated in THCA cells and its overexpression can suppress thyroid cancer cell viability, mobility and invasiveness remarkably. Up‐regulation of HORMAD2 in THCA cells could prolong G0/G1 phase and shorten S phase to impede cell mitosis as well as promote thyroid cancer cells apoptosis. Furthermore, tumour formation assay showed that increased HORMAD2 level impeded tumour growth in vivo. Hypermethylation of HORMAD2 could induce THCA progression, while hypomethylation of HORMAD2 retard cell growth and mobility and facilitate apoptosis through increasing its mRNA expression.  相似文献   

13.
Age‐related changes in DNA methylation do occur. Taking advantage of this, mammalian and avian epigenetic clocks have been constructed to predict age. In fish, studies on age‐related DNA methylation changes are scarce and no epigenetic clocks have been constructed. However, in fisheries and population dynamics studies there is a need for accurate estimation of age, something that is often impossible for some economically important species with the currently available methods. Here, we used the European sea bass, a marine fish the age of which can be determined with accuracy, to construct a piscine epigenetic clock, the first one in a cold‐blooded vertebrate. We used targeted bisulfite sequencing to amplify 48 CpGs from four genes in muscle samples and applied penalized regressions to predict age. We thus developed an age predictor in fish that is highly accurate (0.824) and precise (2.149 years). In juvenile fish, accelerated growth due to elevated temperatures had no effect on age prediction, indicating that the clock is able to predict the chronological age independently of environmentally‐driven perturbations. An epigenetic clock developed using muscle samples accurately predicted age in samples of testis but not ovaries, possibly reflecting the reproductive biology of fish. In conclusion, we report the development of the first piscine epigenetic clock, paving the way for similar studies in other species. Piscine epigenetic clocks should be of great utility for fisheries management and conservation purposes, where age determination is of crucial importance.  相似文献   

14.
15.
16.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   

17.
Studies have identified a sub‐group of SGS3‐LIKE proteins including FDM1–5 and IDN2 as key components of RNA‐directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5′ overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1–FDM1 and FDM1–IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss‐of‐function of FDM1. These results demonstrate that XH domain‐mediated complex formation of FDM1 is required for its function in RdDM. In addition, FDM1 binds unmethylated but not methylated DNAs through its coiled‐coil domain. RNAs with 5′ overhangs does not compete with DNA for binding by FDM1, indicating that FDM1 may bind DNA and RNA simultaneously. These results provide insight into how FDM1 functions in RdDM.  相似文献   

18.
19.
Experience‐dependent changes in DNA methylation can exert profound effects on neuronal function and behaviour. A single learning event can induce a variety of DNA modifications within the neuronal genome, some of which may be common to all individuals experiencing the event, whereas others may occur in a subset of individuals. Variations in experience‐induced DNA methylation may subsequently confer increased vulnerability or resilience to the development of neuropsychiatric disorders. However, the detection of experience‐dependent changes in DNA methylation in the brain has been hindered by the interrogation of heterogeneous cell populations, regional differences in epigenetic states and the use of pooled tissue obtained from multiple individuals. Methyl CpG Binding Domain Ultra‐Sequencing (MBD Ultra‐Seq) overcomes current limitations on genome‐wide epigenetic profiling by incorporating fluorescence‐activated cell sorting and sample‐specific barcoding to examine cell‐type‐specific CpG methylation in discrete brain regions of individuals. We demonstrate the value of this method by characterizing differences in 5‐methylcytosine (5mC) in neurons and non‐neurons of the ventromedial prefrontal cortex of individual adult C57BL/6 mice, using as little as 50 ng of genomic DNA per sample. We find that the neuronal methylome is characterized by greater CpG methylation as well as the enrichment of 5mC within intergenic loci. In conclusion, MBD Ultra‐Seq is a robust method for detecting DNA methylation in neurons derived from discrete brain regions of individual animals. This protocol will facilitate the detection of experience‐dependent changes in DNA methylation in a variety of behavioural paradigms and help identify aberrant experience‐induced DNA methylation that may underlie risk and resiliency to neuropsychiatric disease.  相似文献   

20.
The pre‐Bötzinger complex (pre‐BötC) in the ventrolateral medulla oblongata is a presumed kernel of respiratory rhythmogenesis. Ca2+‐activated non‐selective cationic current is an essential cellular mechanism for shaping inspiratory drive potentials. Ca2+/calmodulin‐dependent protein kinase II (CaMKII), an ideal ‘interpreter’ of diverse Ca2+ signals, is highly expressed in neurons in mediating various physiological processes. Yet, less is known about CaMKII activity in the pre‐BötC. Using neurokinin‐1 receptor as a marker of the pre‐BötC, we examined phospho (P)‐CaMKII subcellular distribution, and found that P‐CaMKII was extensively expressed in the region. P‐CaMKII‐ir neurons were usually oval, fusiform, or pyramidal in shape. P‐CaMKII immunoreactivity was distributed within somas and dendrites, and specifically in association with the post‐synaptic density. In dendrites, most synapses (93.1%) examined with P‐CaMKII expression were of asymmetric type, occasionally with symmetric type (6.9%), whereas in somas, 38.1% were of symmetric type. P‐CaMKII asymmetric synaptic identification implicates that CaMKII may sense and monitor Ca2+ activity, and phosphorylate post‐synaptic proteins to modulate excitatory synaptic transmission, which may contribute to respiratory modulation and plasticity. In somas, CaMKII acts on both symmetric and asymmetric synapses, mediating excitatory and inhibitory synaptic transmission. P‐CaMKII was also localized to the perisynaptic and extrasynaptic regions in the pre‐BötC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号