首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
    
Beta-amyloid (Abeta) is a major protein component of senile plaques in Alzheimer's disease, and is neurotoxic when aggregated. The size of aggregated Abeta responsible for the observed neurotoxicity and the mechanism of aggregation are still under investigation; however, prevention of Abeta aggregation still holds promise as a means to reduce Abeta neurotoxicity. In research presented here, we show that Hsp20, a novel alpha-crystallin isolated from the bovine erythrocyte parasite Babesia bovis, was able to prevent aggregation of denatured alcohol dehydrogenase when the two proteins are present at near equimolar levels. We then examined the ability of Hsp20 produced as two different fusion proteins to prevent Abeta amyloid formation as indicated by Congo Red binding; we found that not only was Hsp20 able to dramatically reduce Congo Red binding, but it was able to do so at molar ratios of Hsp20 to Abeta of 1 to 1000. Electron microscopy confirmed that Hsp20 does prevent Abeta fibril formation. Hsp20 was also able to significantly reduce Abeta toxicity to both SH-SY5Y and PC12 neuronal cells at similar molar ratios. At high concentrations of Hsp20, the protein no longer displays its aggregation inhibition and toxicity attenuation properties. Size exclusion chromatography indicated that Hsp20 was active at low concentrations in which dimer was present. Loss of activity at high concentrations was associated with the presence of higher oligomers of Hsp20. This work could contribute to the development of a novel aggregation inhibitor for prevention of Abeta toxicity.  相似文献   

5.
We have previously reported that dietary docosahexaenoic acid (DHA) improves and/or protects against impairment of cognition ability in amyloid beta1‐40 (Aβ1‐40)‐infused Alzheimer’s disease (AD)‐model rats. Here, after the administration of DHA to AD model rats for 12 weeks, the levels of Aβ1‐40, cholesterol and the composition of fatty acids were investigated in the Triton X100‐insoluble membrane fractions of their cerebral cortex. The effects of DHA on the in vitro formation and kinetics of fibrillation of Aβ1‐40 were also investigated by thioflavin T fluorescence spectroscopy, transmission electron microscopy and fluorescence microscopy. Dietary DHA significantly decreased the levels of Aβ1‐40, cholesterol and saturated fatty acids in the detergent insoluble membrane fractions of AD rats. The formation of Aβ fibrils was also attenuated by their incubation with DHA, as demonstrated by the decreased intensity of thioflavin T‐derived fluorescence and by electron micrography. DHA treatment also decreased the intensity of thioflavin fluorescence in preformed‐fibril Aβ peptides, demonstrating the anti‐amyloidogenic effects of DHA. We then investigated the effects of DHA on the levels of oligomeric amyloid that is generated during its in vitro transformation from monomers to fibrils, by an anti‐oligomer‐specific antibody and non‐reducing Tris‐Glycine gradient (4–20%) gel electrophoresis. DHA concentration‐dependently reduced the levels of oligomeric amyloid species, suggesting that dietary DHA‐induced suppression of in vivo1‐40 aggregation occurs through the inhibitory effect of DHA on oligomeric amyloid species.  相似文献   

6.
This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co‐immunoprecipitated with assembled NR1‐1a/NR2A and NR1‐1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1‐1a, NR1‐2a, NR1‐4bc‐Myc, or NR2 subunit transfections revealed that co‐association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2′ cassettes and, the use of an NR1‐2ac‐Myc‐trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum. The use of antibodies directed against extracellular and intracellular NR2 subunit epitopes for immunoprecipitations suggested that APP/NMDA receptor association was mediated via N‐terminal domains. Anti‐APP antibodies immunoprecipitated NR1, NR2A, and NR2B immunoreactive bands from detergent extracts of mammalian brain; reciprocally, anti‐NR1 or anti‐NR2A antibodies co‐immunoprecipitated APP immunoreactivity. Immune pellets from brain were sensitive to endoglycosidase H suggesting that, as for heterologous expression, APP and NMDA receptor association occurs in the endoplasmic reticulum. Co‐expression of APP695 in mammalian cells resulted in enhanced cell surface expression of both NR1‐1a/NR2A and NR1‐1a/NR2B NMDA receptors with no increase in total subunit expression. These findings are further evidence for a role of APP in intracellular trafficking mechanisms. Further, they provide a link between two major brain proteins that have both been implicated in Alzheimer’s disease.  相似文献   

7.
LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player in the pathology of the Alzheimer's disease (AD). AD is a neurodegenerative disease and the most common cause of dementia in the elderly. Current estimates suggest that as many as 5.3 million Americans are living with AD. Recent investigations have uncovered the pathophysiological relevance of APP intracellular trafficking in AD. LR11 is of particular importance due to its role in regulating APP transport and processing. LR11 is a type I transmembrane protein and belongs to a novel family of Vps10p receptors. Using a new expression vector, pMTTH (MBP-MCS1 (multiple cloning site)-Thrombin protease cleavage site-MCS2-TEV protease cleavage site-MCS3-His(6)), we successfully expressed, purified and reconstituted the LR11 transmembrane (TM) and cytoplasmic (CT) domains into bicelles and detergent micelles for NMR structural studies. This new construct allowed us to overcome several obstacles during sample preparation. MBP fused LR11TM and LR11TMCT proteins are preferably expressed at high levels in Escherichia coli membrane, making a refolding of the protein unnecessary. The C-terminal His-tag allows for easy separation of the target protein from the truncated products from the C-terminus, and provides a convenient route for screening detergents to produce high quality 2D (1)H-(15)N TROSY spectra. Thrombin protease cleavage is compatible with most of the commonly used detergents, including a direct cleavage at the E. coli membrane surface. This new MBP construct may provide an effective route for the preparation of small proteins with TM domains.  相似文献   

8.
9.
10.
    
The function of amyloid precursor protein (APP) is unknown, although the discovery that it contributes to the regulation of surface expression of N‐methyl‐d ‐aspartate (NMDA) receptors has afforded new insights into its functional significance. Since APP is a member of a gene family that contains two other members, amyloid precursor‐like proteins 1 and 2 (APLP1 and APLP2), it is important to determine if the related APP proteins possess the same properties as APP with respect to their interactions with NMDA receptors. Following expression in mammalian cells, both APLP1 and APLP2 behaved similarly to APP in that they both co‐immunoprecipitated with the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B, via interaction with the obligatory GluN1 subunit. Immunoprecipitations from detergent extracts of adult mammalian brain showed co‐immunoprecipitation of APLP1 and APLP2 with GluN2A‐ and GluN2B‐containing NMDA receptors. Furthermore, similarly to APP, APLP1 and APLP2 both enhanced GluN1/GluN2A and GluN1/GluN2B cell surface expression. Thus, all the three members of the APP gene family behave similarly in that they each contribute to the regulation of cell surface NMDA receptor homoeostasis.

  相似文献   


11.
    
An antibody fragment that recognizes the tertiary structure of a target protein with high affinity can be utilized as a crystallization chaperone. Difficulties in establishing conformation‐specific antibodies, however, limit the applicability of antibody fragment‐assisted crystallization. Here, we attempted to establish an alternative method to promote the crystallization of target proteins using an already established anti‐tag antibody. The monoclonal antibody NZ‐1 recognizes the PA tag with an extremely high affinity. It was also established that the PA tag is accommodated in the antigen‐binding pocket in a bent conformation, compatible with an insertion into loop regions on the target. We, therefore, explored the application of NZ‐1 Fab as a crystallization chaperone that complexes with a target protein displaying a PA tag. Specifically, we inserted the PA tag into the β‐hairpins of the PDZ tandem fragment of a bacterial Site‐2 protease. We crystallized the PA‐inserted PDZ tandem mutants with the NZ‐1 Fab and solved the co‐crystal structure to analyze their interaction modes. Although the initial insertion designs produced only moderate‐resolution structures, eliminating the solvent‐accessible space between the NZ‐1 Fab and target PDZ tandem improved the diffraction qualities remarkably. Our results demonstrate that the NZ‐1‐PA system efficiently promotes crystallization of the target protein. The present work also suggests that β‐hairpins are suitable sites for the PA insertion because the PA tag contains a Pro‐Gly sequence with a propensity for a β‐turn conformation.  相似文献   

12.
13.
14.
15.
16.
    
The deposition of amyloid β (Aβ) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most patients with Alzheimer’s disease (AD). Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (APP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents and subsequently generated mice that specifically express human WT APP (APP770) in endothelial cells (ECs). The resulting EC-APP770+ mice exhibited increased levels of serum Aβ and soluble APP, indicating that endothelial APP makes a critical contribution to blood Aβ levels. Even though aged EC-APP770+ mice did not exhibit Aβ deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aβ deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood–brain barrier upon administration of anti-Aβ antibodies.  相似文献   

17.
Overwhelming evidence supports the amyloid hypothesis of Alzheimer's disease that stipulates that the relative level of the 42 amino acid beta-amyloid peptide (Abeta(42)) in relationship to Abeta(40) is critical to the pathogenesis of the disease. While it is clear that the multi-subunit gamma secretase is responsible for cleavage of the amyloid precursor protein (APP) into Abeta(42) and Abeta(40), the exact molecular mechanisms regulating the production of the various Abeta species remain elusive. To elucidate the underlying mechanisms, we replaced individual amino acid residues from positions 43 to 52 of Abeta with phenylalanine to examine the effects on the production of Abeta(40) and Abeta(42). All mutants, except for V50F, resulted in a decrease in total Abeta with a more prominent reduction in Abeta for residues 45, 48, and 51, following an every three residue repetition pattern. In addition, the mutations with the strongest reductions in total Abeta had the largest increases in the ratio of Abeta(42)/Abeta(40). Curiously, the T43F, V44F, and T48F mutations caused a striking decrease in the accumulation of membrane bound Abeta(46), albeit by a different mechanism. Our data suggest that initial cleavage of APP at the epsilon site is crucial in the generation of Abeta. The implicated sequential cleavage and an alpha-helical model may lead to a better understanding of the gamma-secretase-mediated APP processing and may also provide useful information for therapy and drug design aimed at altering Abeta production.  相似文献   

18.
    
Mounting evidence supports a link between diabetes, cognitive dysfunction, and aging. However, the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. To determine how diabetes contributes to cognitive dysfunction and age‐associated pathology, we used streptozotocin to induce type 1 diabetes (T1D) in senescence‐accelerated prone 8 (SAMP8) and senescence‐resistant 1 (SAMR1) mice. Contextual fear conditioning demonstrated that T1D resulted in the development of cognitive deficits in SAMR1 mice similar to those seen in age‐matched, nondiabetic SAMP8 mice. No further cognitive deficits were observed when the SAMP8 mice were made diabetic. T1D dramatically increased Aβ and glial fibrillary acidic protein immunoreactivity in the hippocampus of SAMP8 mice and to a lesser extent in age‐matched SAMR1 mice. Further analysis revealed aggregated Aβ within astrocyte processes surrounding vessels. Western blot analyses from T1D SAMP8 mice showed elevated amyloid precursor protein processing and protein glycation along with increased inflammation. T1D elevated tau phosphorylation in the SAMR1 mice but did not further increase it in the SAMP8 mice where it was already significantly higher. These data suggest that aberrant glucose metabolism potentiates the aging phenotype in old mice and contributes to early stage central nervous system pathology in younger animals.  相似文献   

19.
    
The orphan nuclear receptor Nurr1 (also known as NR4A2) is critical for the development and maintenance of midbrain dopaminergic neurons, and is associated with Parkinson's disease. However, an association between Nurr1 and Alzheimer's disease (AD)‐related pathology has not previously been reported. Here, we provide evidence that Nurr1 is expressed in a neuron‐specific manner in AD‐related brain regions; specifically, it is selectively expressed in glutamatergic neurons in the subiculum and the cortex of both normal and AD brains. Based on Nurr1’s expression patterns, we investigated potential functional roles of Nurr1 in AD pathology. Nurr1 expression was examined in the hippocampus and cortex of AD mouse model and postmortem human AD subjects. In addition, we performed both gain‐of‐function and loss‐of‐function studies of Nurr1 and its pharmacological activation in 5XFAD mice. We found that knockdown of Nurr1 significantly aggravated AD pathology while its overexpression alleviated it, including effects on Aβ accumulation, neuroinflammation, and neurodegeneration. Importantly, 5XFAD mice treated with amodiaquine, a highly selective synthetic Nurr1 agonist, showed robust reduction in typical AD features including deposition of Aβ plaques, neuronal loss, microgliosis, and impairment of adult hippocampal neurogenesis, leading to significant improvement of cognitive impairment. These in vivo and in vitro findings suggest that Nurr1 critically regulates AD‐related pathophysiology and identify Nurr1 as a novel AD therapeutic target.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号