首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen fibrils represent a unique case of protein folding and self‐association. We have recently successfully developed triple‐helical peptides that can further self‐assemble into collagen‐mimetic mini‐fibrils. The 35 nm axially repeating structure of the mini‐fibrils, which is designated the d‐period, is highly reminiscent of the well‐known 67 nm D‐period of native collagens when examined using TEM and atomic force spectroscopy. We postulate that it is the pseudo‐identical repeating sequence units in the primary structure of the designed peptides that give rise to the d‐period of the quaternary structure of the mini‐fibrils. In this work, we characterize the self‐assembly of two additional designed peptides: peptide Col877 and peptide Col108rr. The triple‐helix domain of Col877 consists of three pseudo‐identical amino acid sequence units arranged in tandem, whereas that of Col108rr consists of three sequence units identical in amino acid composition but different in sequence. Both peptides form stable collagen triple helices, but only triple helices Col877 self‐associate laterally under fibril forming conditions to form mini‐fibrils having the predicted d‐period. The Co108rr triple helices, however, only form nonspecific aggregates having no identifiable structural features. These results further accentuate the critical involvement of the repeating sequence units in the self‐assembly of collagen mini‐fibrils; the actual amino acid sequence of each unit has only secondary effects. Collagen is essential for tissue development and function. This novel approach to creating collagen‐mimetic fibrils can potentially impact fundamental research and have a wide range of biomedical and industrial applications.  相似文献   

2.
Engineered combinatorial libraries derived from small protein scaffolds represent a powerful tool for generating novel binders with high affinity, required specificity and designed inhibitory function. This work was aimed to generate a collection of recombinant binders of human interleukin‐23 receptor (IL‐23R), which is a key element of proinflammatory IL‐23‐mediated signaling. A library of variants derived from the three‐helix bundle scaffold of the albumin‐binding domain (ABD) of streptococcal protein G and ribosome display were used to select for high‐affinity binders of recombinant extracellular IL‐23R. A collection of 34 IL‐23R‐binding proteins (called REX binders), corresponding to 18 different sequence variants, was used to identify a group of ligands that inhibited binding of the recombinant p19 subunit of IL‐23, or the biologically active human IL‐23 cytokine, to the recombinant IL‐23R or soluble IL‐23R‐IgG chimera. The strongest competitors for IL‐23R binding in ELISA were confirmed to recognize human IL‐23R‐IgG in surface plasmon resonance experiments, estimating the binding affinity in the sub‐ to nanomolar range. We further demonstrated that several REX variants bind to human leukemic cell lines K‐562, THP‐1 and Jurkat, and this binding correlated with IL‐23R cell‐surface expression. The REX125, REX009 and REX128 variants competed with the p19 protein for binding to THP‐1 cells. Moreover, the presence of REX125, REX009 and REX115 variants significantly inhibited the IL‐23‐driven expansion of IL‐17‐producing primary human CD4+ T‐cells. Thus, we conclude that unique IL‐23R antagonists derived from the ABD scaffold were generated that might be useful in designing novel anti‐inflammatory biologicals. Proteins 2014; 82:975–989. © 2013 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

3.
A reversible green fluorogenic protein‐fragment complementation assay was developed based on the crystal structure of UnaG, a recently discovered fluorescent protein. In living mammalian cells, the nonfluorescent fragments complemented and rapidly became fluorescent upon rapamycin‐induced FKBP and Frb protein interaction, and lost fluorescence when the protein interaction was inhibited. This reversible fluorogenic reporter, named uPPI [UnaG‐based protein‐protein interaction (PPI) reporter], uses bilirubin (BR) as the chromophore and requires no exogenous cofactor. BR is an endogenous molecule in mammalian cells and is not fluorescent by itself. uPPI may have many potential applications in visualizing spatiotemporal dynamics of PPIs.  相似文献   

4.
Short, alpha‐helical coiled coils provide a simple, modular method to direct the assembly of proteins into higher order structures. We previously demonstrated that by genetically fusing de novo–designed coiled coils of the appropriate oligomerization state to a natural trimeric protein, we could direct the assembly of this protein into various geometrical cages. Here, we have extended this approach by appending a coiled coil designed to trimerize in response to binding divalent transition metal ions and thereby achieve metal ion‐dependent assembly of a tetrahedral protein cage. Ni2+, Co2+, Cu2+, and Zn2+ ions were evaluated, with Ni2+ proving the most effective at mediating protein assembly. Characterization of the assembled protein indicated that the metal ion–protein complex formed discrete globular structures of the diameter expected for a complex containing 12 copies of the protein monomer. Protein assembly could be reversed by removing metal ions with ethylenediaminetetraacetic acid or under mildly acidic conditions.  相似文献   

5.
The tomato Cf‐9 gene encodes a membrane‐anchored glycoprotein that imparts race‐specific resistance against the tomato leaf mould fungus Cladosporium fulvum in response to the avirulence protein Avr9. Although the N‐terminal half of the extracellular leucine‐rich repeat (eLRR) domain of the Cf‐9 protein determines its specificity for Avr9, the C‐terminal half, including its small cytosolic domain, is postulated to be involved in signalling. The cytosolic domain of Cf‐9 carries several residues that are potential sites for ubiquitinylation or phosphorylation, or signals for endocytic uptake. A targeted mutagenesis approach was employed to investigate the roles of these residues and cellular processes in Avr9‐dependent necrosis triggered by Cf‐9. Our results indicate that the membrane‐proximal region of the cytosolic domain of Cf‐9 plays an important role in Cf‐9‐mediated necrosis, and two amino acids within this region, a threonine (T835) and a proline (P838), are particularly important for Cf‐9 function. An alanine mutation of T835 had no effect on Cf‐9 function, but an aspartic acid mutation, which mimics phosphorylation, reduced Cf‐9 function. We therefore postulate that phosphorylation/de‐phosphorylation of T835 could act as a molecular switch to determine whether Cf‐9 is in a primed or inactive state. Yeast two‐hybrid analysis was used to show that the cytosolic domain of Cf‐9 interacts with the cytosolic domain of tomato VAP27. This interaction could be disrupted by an alanine mutation of P838, whereas interaction with CITRX remained unaffected. We therefore postulate that a proline‐induced kink in the membrane‐proximal region of the cytosolic domain of Cf‐9 may be important for interaction with VAP27, which may, in turn, be important for Cf‐9 function.  相似文献   

6.
The amyloid precursor protein (APP) is a membrane protein implicated in the pathogenesis of Alzheimer's disease. APP is a part‐time proteoglycan, as splice variants lacking exon 15 are modified by a chondroitin sulfate glycosaminoglycan (GAG) chain. Investigating the effect of the GAG chain on the trafficking of APP in non‐polarized cells, we found it to increase the steady‐state surface‐to‐intracellular distribution, to reduce the rate of endocytosis and to accelerate transport kinetics from the trans‐Golgi network (TGN) to the plasma membrane. Deletion of the cytosolic domain resulted in delayed surface arrival of GAG‐free APP, but did not affect the rapid export kinetics of the proteoglycan form. Protein‐free GAG chains showed the same TGN‐to‐cell surface transport kinetics as proteoglycan APP. Endosome ablation experiments were performed to distinguish between indirect endosomal and direct pathways to the cell surface. Surprisingly, TGN‐to‐cell surface transport of both GAG‐free and proteoglycan APP was found to be indirect via transferrin‐positive endosomes. Our results show that GAGs act as alternative sorting determinants in cellular APP transport that are dominant over cytoplasmic signals and involve distinct sorting mechanisms.   相似文献   

7.
Lymphocyte function‐associated antigen‐1 (LFA‐1) is an integrin protein that transmits information across the plasma membrane through the so‐called inside‐out and outside‐in signaling mechanisms. To investigate these mechanisms, we carried out an NMR analysis of the dynamics of the LFA‐1 I‐domain, which has enabled us to characterize the motions of this domain on a broad range of timescales. We studied first the internal motions on the nanosecond timescale by spin relaxation measurements and model‐free analysis. We then extended this analysis to the millisecond timescale motions by measuring 15N‐1H residual dipolar couplings of the backbone amide groups. We analyzed these results in the context of the three major conformational states of the I‐domain using their corresponding X‐ray crystallographic structures. Our results highlight the importance of the low‐frequency motions of the LFA‐1 I‐domain in the inactive apo‐state. We found in particular that α‐helix 7 is in a position in the apo‐closed state that cannot be fully described by any of the existing X‐ray structures, as it appears to be in dynamic exchange between different conformations. This type of motion seems to represent an inherent property of the LFA‐1 I‐domain and might be relevant for controlling the access to the allosteric binding pocket, as well as for the downward displacement of α‐helix 7 that is required for the activation of LFA‐1.  相似文献   

8.
Saurav Mallik  Sudip Kundu 《Proteins》2017,85(7):1183-1189
Is the order in which biomolecular subunits self‐assemble into functional macromolecular complexes imprinted in their sequence‐space? Here, we demonstrate that the temporal order of macromolecular complex self‐assembly can be efficiently captured using the landscape of residue‐level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high‐affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183–1189. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
Arginine‐rich motifs (ARMs) bind RNA structures with high affinity and specificity, and the human immunodeficiency virus (HIV) exploits ARM‐RNA interactions to regulate its lifecycle. The expression of HIV structural genes relies on recognition between the ARM of its Rev protein and its primary binding site, an internal loop in the viral RNA, the Rev‐response element region IIB (IIB). Many functional variants of the Rev ARM‐IIB interaction have been discovered, yet how easily it can evolve new specificities is poorly explored. A double mutant of Rev ARM, R35G‐N40 V, uses an unknown strategy to recognize IIB. Here, isothermal titration calorimetry and gel shift assays show that the R35G‐N40V‐IIB interaction has high affinity and specificity in vitro and a larger unfavorable entropy change upon binding than that of wild‐type Rev ARM‐IIB. In stark contrast with the critical dependence of wild‐type Rev on Arg35, Arg39, Asn40, and Arg44, mutational profiling shows R35G‐N40V is highly mutable at positions 40 and 44 and dependent on Gly35, Arg38, Arg39, Arg42, and Arg43. Affinity measurements in vitro and reporter assay measurements in vivo are consistent with the wild‐type Rev ARM and R35G‐N40V maintaining their recognition strategies when binding IIB mutants specific to wild‐type Rev ARM and R35G‐N40V, respectively. Some single amino acid mutants of wild‐type Rev ARM and R35G‐N40V have enhanced specificity, recognizing mutant IIBs yet not wild‐type IIB. These results provide another example of viral ARM‐RNA interactions evolving new specificities with few mutations, consistent with neutral theories of evolution.  相似文献   

10.
11.
This work is the first in a series devoted to applying mode coupling diffusion theory to the derivation of local dynamics properties of proteins in solution. The first‐order mode‐coupling approximation, or optimized Rouse–Zimm local dynamics (ORZLD), is applied here to derive the rotational dynamics of the bonds and compare the calculated with the experimental nmr 15N spin–lattice relaxation time behavior of the vnd/NK‐2 homeodomain from Drosophila melanogaster. The starting point for the calculations is the experimental three‐dimensional structure of the homeodomain determined by multidimensional nmr spectroscopy. The results of the computations are compared with experimentally measured 15N spin–lattice relaxation times T1, at 34.5 and 60.8 MHz, to check the first‐order approximation. To estimate the relative importance of internal and overall rotation, both rigid and fluctuating dynamic models are examined, with fluctuations evaluated using molecular dynamics (MD) simulations. The correlation times for the fundamental bond vector time correlation function and for the second‐order bond orientational TCF are obtained as a function of the residue number for vnd/NK‐2. The stability of the corresponding local dynamics pattern for the fluctuating structure as a function of the length of the MD trajectory is presented. Diffusive dynamics, which is essentially free of model parameters even at first order in the mode‐coupling diffusion approach, confirm that local dynamics of proteins can be described in terms of rotational diffusion of a fluctuating quasi‐rigid structure. The comparison with the nmr data shows that the first‐order mode coupling diffusion approximation accounts for the correct order of magnitude of the results and of important qualitative aspects of the data sensitive to conformational changes. Indications are obtained from this study to efficiently extend the theory to higher order in the mode‐coupling expansion. These results demonstrate the promise of the mode‐coupling approach, where the local dynamics of proteins is described in terms of rotational diffusion of a fluctuating quasi‐rigid structure, to analyze nmr spin–lattice relaxation behavior. © 1999 John Wiley & Sons, Inc. Biopoly 49: 235–254, 1999  相似文献   

12.
Despite the important role of the carboxyl‐terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1‐Gi complex (Shim, Ahn, and Kendall, The Journal of Biological Chemistry 2013;288:32449–32465) to incorporate a complete CB1 Ct (Glu416Ct–Leu472Ct). Based on the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1‐Gi complex. The resulting models were consistent with the NMR‐determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site‐directed mutagenesis studies of Glu416Ct, Asp423Ct, Asp428Ct, and Arg444Ct of CB1 Ct suggested that the CB1 Ct can influence receptor‐G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. Proteins 2016; 84:532–543. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
14.
Self‐assembly of artificially designed proteins is extremely desirable for nanomaterials. Here we show a novel strategy for the creation of self‐assembling proteins, named “Nanolego.” Nanolego consists of “structural elements” of a structurally stable symmetrical homo‐oligomeric protein and “binding elements,” which are multiple heterointeraction proteins with relatively weak affinity. We have established two key technologies for Nanolego, a stabilization method and a method for terminating the self‐assembly process. The stabilization method is mediated by disulfide bonds between Cysteine‐residues incorporated into the binding elements, and the termination method uses “capping Nanolegos,” in which some of the binding elements in the Nanolego are absent for the self‐assembled ends. With these technologies, we successfully constructed timing‐controlled and size‐regulated filament‐shape complexes via Nanolego self‐assembly. The Nanolego concept and these technologies should pave the way for regulated nanoarchitecture using designed proteins.  相似文献   

15.
16.
17.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

18.
Predicted protein residue–residue contacts can be used to build three‐dimensional models and consequently to predict protein folds from scratch. A considerable amount of effort is currently being spent to improve contact prediction accuracy, whereas few methods are available to construct protein tertiary structures from predicted contacts. Here, we present an ab initio protein folding method to build three‐dimensional models using predicted contacts and secondary structures. Our method first translates contacts and secondary structures into distance, dihedral angle, and hydrogen bond restraints according to a set of new conversion rules, and then provides these restraints as input for a distance geometry algorithm to build tertiary structure models. The initially reconstructed models are used to regenerate a set of physically realistic contact restraints and detect secondary structure patterns, which are then used to reconstruct final structural models. This unique two‐stage modeling approach of integrating contacts and secondary structures improves the quality and accuracy of structural models and in particular generates better β‐sheets than other algorithms. We validate our method on two standard benchmark datasets using true contacts and secondary structures. Our method improves TM‐score of reconstructed protein models by 45% and 42% over the existing method on the two datasets, respectively. On the dataset for benchmarking reconstructions methods with predicted contacts and secondary structures, the average TM‐score of best models reconstructed by our method is 0.59, 5.5% higher than the existing method. The CONFOLD web server is available at http://protein.rnet.missouri.edu/confold/ . Proteins 2015; 83:1436–1449. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
ERC‐55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC‐55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC‐55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC‐55 splicing variants including ERC‐55‐C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub‐cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin‐6, kininogen and lysozyme with ERC‐55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca2+] of ~10?7 M or greater, while calcyclin interaction requires [Ca2+] of >10?5 M. Interaction with peroxiredoxin‐6 is independent of Ca2+. Co‐localization of lactoferrin, S100P and calcyclin with ERC‐55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC‐55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号