首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐alcohol fatty liver disease (NAFLD) is a common disease which causes serious liver damage. Geniposide (GEN), a kind of iridoid glycoside extracted from Gardenia jasminoides fruit, has many biological effects, such as resistance to cell damage and anti‐neurodegenerative disorder. Lipid accumulation was obvious in tyloxapol‐induced liver and oil acid (OA) with palmitic acid (PA)‐induced HepG2 cells compared with the control groups while GEN improved the increasing conditions. GEN significantly lessened the total cholesterol (TC), the triglyceride (TG), low‐density lipoprotein (LDL), very low‐density lipoprotein (VLDL), myeloperoxidase (MPO), reactive oxygen species (ROS) and increased high‐density lipoprotein (HDL), superoxide dismutase (SOD) to response the oxidative stress via activating nuclear factor erythroid‐2–related factor 2 (Nrf2), haeme oxygenase (HO)‐1 and peroxisome proliferator‐activated receptor (PPAR)α which may influence the phosphorylation of adenosine 5’‐monophosphate–activated protein kinase (AMPK) signalling pathway in mice and cells. Additionally, GEN evidently decreased the contents of sterol regulatory element‐binding proteins (SREBP)‐1c, phosphorylation (P)‐mechanistic target of rapamycin complex (mTORC), P‐S6K, P‐S6 and high mobility group protein (HMGB) 1 via inhibiting the expression of phosphoinositide 3‐kinase (PI3K), and these were totally abrogated in Nrf2?/? mice. Our study firstly proved the protective effect of GEN on lipid accumulation via enhancing the ability of antioxidative stress and anti‐inflammation which were mostly depend on up‐regulating the protein expression of Nrf2/HO‐1 and AMPK signalling pathways, thereby suppressed the phosphorylation of mTORC and its related protein.  相似文献   

2.
Sodium salicylate (NaSal) is a nonsteroidal anti‐inflammatory drug. The putative mechanisms for NaSal's pharmacologic actions include the inhibition of cyclooxygenases, platelet‐derived thromboxane A2, and NF‐κB signaling. Recent studies demonstrated that salicylate could activate AMP‐activated protein kinase (AMPK), an energy sensor that maintains the balance between ATP production and consumption. The anti‐inflammatory action of AMPK has been reported to be mediated by promoting mitochondrial biogenesis and fatty acid oxidation. However, the exact signals responsible for salicylate‐mediated inflammation through AMPK are not well‐understood. In the current study, we examined the potential effects of NaSal on inflammation‐like responses of THP‐1 monocytes to lipopolysaccharide (LPS) challenge. THP‐1 cells were stimulated with or without 10 ug/mL LPS for 24 h in the presence or absence of 5 mM NaSal. Apoptosis was measured by flow cytometry using Annexin V/PI staining and by Western blotting for the Bcl‐2 anti‐apoptotic protein. Cell proliferation was detected by EdU incorporation and by Western blot analysis for proliferating cell nuclear antigen (PCNA). Secretion of pro‐inflammatory cytokines (TNF‐α, IL‐1β, IL‐6) was determined by enzyme‐linked immunosorbent assay (ELISA). We observed that the activation of AMPK by NaSal was accompanied by induction of apoptosis, inhibition of cell proliferation, and increasing secretion of TNF‐α and IL‐1β. These effects were reversed by Compound C, an inhibitor of AMPK. In addition, NaSal/AMPK activation inhibited LPS‐induced STAT3 phosphorylation, which was reversed by Compound C treatment. We conclude that AMPK activation is important for NaSal‐mediated inflammation by inducing apoptosis, reducing cell proliferation, inhibiting STAT3 activity, and producing TNF‐α and IL‐1β.  相似文献   

3.
Obesity and insulin resistance are associated with chronic, low grade inflammation. Moreover, regulation of energy metabolism and immunity are highly integrated. We hypothesized that energy-sensitive coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase (AMPK) may modulate inflammatory gene expression in liver. Microarray analysis revealed that PGC-1α up-regulated expression of several cytokines and cytokine receptors, including interleukin 15 receptor α (IL15Rα) and, even more importantly, anti-inflammatory interleukin 1 receptor antagonist (IL1Rn). Overexpression of PGC-1α and induction of PGC-1α by fasting, physical exercise, glucagon, or cAMP was associated with increased IL1Rn mRNA and protein expression in hepatocytes. Knockdown of PGC-1α by siRNA down-regulated cAMP-induced expression of IL1Rn in mouse hepatocytes. Furthermore, knockdown of peroxisome proliferator-activated receptor α (PPARα) attenuated IL1Rn induction by PGC-1α. Overexpression of PGC-1α, at least partially through IL1Rn, suppressed interleukin 1β-induced expression of acute phase proteins, C-reactive protein, and haptoglobin. Fasting and exercise also induced IL15Rα expression, whereas glucagon and cAMP resulted in reduction in IL15Rα mRNA levels. Finally, AMPK activator metformin and adenoviral overexpression of AMPK up-regulated IL1Rn and down-regulated IL15Rα in primary hepatocytes. We conclude that PGC-1α and AMPK alter inflammatory gene expression in liver and thus integrate energy homeostasis and inflammation. Induction of IL1Rn by PGC-1α and AMPK may be involved in the beneficial effects of exercise and caloric restriction and putative anti-inflammatory effects of metformin.  相似文献   

4.
The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate‐buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl‐CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca2+/calmodulin‐dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCβ, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARγ‐co‐activator 1α (PGC1α) protein levels were also increased in LE‐treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCα, PPARα, AdipoR1, AdipoR2, and sterol regulatory element–binding protein‐1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.  相似文献   

5.
Tissue damage and its associated‐inflammation act as tumour initiators or propagators. AMP‐activated protein kinase (AMPK) is activated by environmental or nutritional stress factors, such as hypoxia, glucose deprivation, and other cell injury factors, to regulate cell energy balance and differentiation. We previously have reported that AMPKα2 deficiency resulted in the energy deprivation in tumour‐bearing liver and the enhanced‐hepatocyte death. In this study, AMPKα2 knockout mice and the liver metastasis model of colon cancer cells were used to address the role of AMPKα isoforms in tumour inflammation. First, we found that the AMPKα2 deficiency exacerbated the liver injury and recruitment of macrophages. Meanwhile, although compensatory expression of AMPKα1 was not significant after AMPKα2 knockout, AMPKα1 phosphorylation was elevated in remnant liver in AMPKα2 knockout mice, which was positively associated with the enhanced energy deprivation in the AMPKα2 deficient mice. Furthermore, the activated AMPKα1 in macrophage contributed to its polarizing to tumour‐associated phenotype. Thus, the enhanced tumour‐associated inflammation and activation of AMPKα1 in the AMPKα2 deficient mice may exacerbate the tumour development by affecting the tumour inflammatory microenvironment. Our study suggests that the two isoforms of AMPKα, AMPKα1 and AMPKα2 play different roles in controlling tumour development.  相似文献   

6.
Disruption of the intestinal epithelial barrier, that involves the activation of C‐Jun N‐terminal kinase (JNK), contributes to initiate and accelerate inflammation in inflammatory bowel disease. Metformin has unexpected beneficial effects other than glucose‐lowering effects. Here, we provided evidence that metformin can protect against intestinal barrier dysfunction in colitis. We showed that metformin alleviated dextran sodium sulphate (DSS)‐induced decreases in transepithelial electrical resistance, FITC‐dextran hyperpermeability, loss of the tight junction (TJ) proteins occludin and ZO‐1 and bacterial translocation in Caco‐2 cell monolayers or in colitis mice models. Metformin also improved TJ proteins expression in ulcerative colitis patients with type 2 diabetes mellitus. We found that metformin ameliorated the induction of colitis and reduced the levels of pro‐inflammatory cytokines IL‐6, TNF‐a and IL‐1β. In addition, metformin suppressed DSS‐induced JNK activation, an effect dependent on AMP‐activated protein kinase α1 (AMPKα1) activation. Consistent with this finding, metformin could not maintain the barrier function of AMPKα1‐silenced cell monolayers after DSS administration. These findings highlight metformin protects against intestinal barrier dysfunction. The potential mechanism may involve in the inhibition of JNK activation via an AMPKα1‐dependent signalling pathway.  相似文献   

7.
In schistosomiasis japonica and mansoni, parasite eggs trapped in host liver elicit severe liver granulomatous inflammation that subsequently leads to periportal fibrosis, portal hypertension, haemorrhage or even death. Macrophages are critical for granuloma formation and the development of liver fibrosis during schistosomiasis. However, whether the aberrant regulation of macrophage autophagy has an effect on the development of liver immunopathology in schistosomiasis remains to be elucidated. In this study, we showed that Schistosoma japonicum (S. japonicum) egg antigen (SEA)‐triggered macrophage autophagy limited the development of pathology in host liver. However, engagement of IL‐7 receptor (IL‐7R/CD127) on macrophages by S. japonicum infection‐induced IL‐7 significantly suppressed SEA‐triggered macrophage autophagy, which led to an enhanced liver pathology. In addition, anti‐IL‐7 neutralizing antibody or anti‐CD127 blocking antibody treatment increased macrophage autophagy and suppressed liver pathology. Finally, we demonstrated that IL‐7 protects macrophage against SEA‐induced autophagy through activation of AMP‐activated protein kinase (AMPK). Our study reveals a novel role for IL‐7 in macrophage autophagy and identifies AMPK as a novel downstream mediator of IL‐7‐IL‐7R signalling and suggests that manipulation of macrophage autophagy by targeting IL‐7‐IL‐7R signalling may have the potential to lead to improved treatment options for liver pathogenesis in schistosomiasis.  相似文献   

8.
Celastrol, a pentacyclic tritepene extracted from Tripterygium Wilfordi plant, showing potent liver protection effects on several liver‐related diseases. However, the anti‐inflammatory potential of celastrol in liver fibrosis and the detailed mechanisms remain uncovered. This study was to investigate the anti‐inflammatory effect of celastrol in liver fibrosis and to further reveal mechanisms of celastrol‐induced anti‐inflammatory effects with a focus on AMPK‐SIRT3 signalling. Celastrol showed potent ameliorative effects on liver fibrosis both in activated hepatic stellate cells (HSCs) and in fibrotic liver. Celastrol remarkably suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Interestingly, celastrol increased SIRT3 promoter activity and SIRT3 expression both in fibrotic liver and in activated HSCs. Furthermore, SIRT3 silencing evidently ameliorated the anti‐inflammatory potential of celastrol. Besides, we found that celastrol could increase the AMPK phosphorylation. Further investigation showed that SIRT3 siRNA decreased SIRT3 expression but had no obvious effect on phosphorylation of AMPK. In addition, inhibition of AMPK by employing compound C (an AMPK inhibitor) or AMPK1α siRNA significantly suppressed SIRT3 expression, suggesting that AMPK was an up‐stream protein of SIRT3 in liver fibrosis. We further found that depletion of AMPK significantly attenuated the inhibitory effect of celastrol on inflammation. Collectively, celastrol attenuated liver fibrosis mainly through inhibition of inflammation by activating AMPK‐SIRT3 signalling, which makes celastrol be a potential candidate compound in treating or protecting against liver fibrosis.  相似文献   

9.
10.
Background: Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver diseases worldwide. At present, there are no effective pharmacological therapies for NAFLD except lifestyle intervention-mediated weight loss. Atractylenolide III (ATL III), the major bioactive component found in Atractylode smacrocephala Koidz, has been shown to exert anti-oxidant, anti-tumor, anti-allergic response, anti-bacterial effects and cognitive protection. Here we investigate the therapeutic potential and underlying mechanisms of ATL III for the treatment of NAFLD.Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) and treated with ATL III. Lipid accumulation was analyzed by Oil Red O staining in liver tissues and free fatty acids (FFAs)-treated hepatocytes. AMP-activated protein (AMPK) and sirtuin 1(SIRT1) signaling pathways were inhibited by Compound C and EX527 in vitro, respectively. Small-interfering RNA (siRNA) was used to knockdown adiponectin receptor 1 (AdipoR1) expression in HepG2 cells.Results: ATL III treatment ameliorated liver injury and hepatic lipid accumulation in the HFD-induced NAFLD mouse model as demonstrated by that ATL III administration significantly reduced serum levels of alanine aminotransferase, glutamic oxaloacetic transaminase, triglycerides, total cholesterol and low-density lipoprotein. Furthermore, treatment with ATL III alleviated hepatic oxidative stress, inflammation and fibrosis in the HFD feeding model. To study the underlying mechanisms, we performed Computer Aided Design assay and found that open-formed AdipoR1 and adiponectin receptor 2 were the potential receptors targeted by ATL III. Interestingly, HFD feeding or FFAs treatment only reduced hepatic AdipoR1 expression, while such reduction was abolished by ATL III administration. In addition, in vitro treatment with ATL III activated the AdipoR1 downstream AMPK /SIRT1 signaling pathway and reduced lipid deposition in HepG2 cells, which was diminished by silencing AdipoR1. Finally, inhibition of AMPK or SIRT1, the AdipoR1 downstream signaling, abolished the protective effects of ATL III on lipid deposition and oxidative stress in FFAs-treated HepG2 cells.Conclusion: Our findings suggest that ATL III is a therapeutic drug for the treatment of NAFLD and such protective effect is mediated by activating hepatic AdipoR1-mediated AMPK/SIRT1 signaling pathway.  相似文献   

11.
12.
Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5′‐AMP‐activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p‐Akt1), and stimulated nuclear translocation of p‐Akt1, to exert their antihypertrophic effects. AMPKα2?/? mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild‐type mice but not AMPKα2?/? mice. The CYP2J2 metabolites, 11,12‐EET, activated AMPKα2 to induce nuclear translocation of p‐Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co‐immunoprecipitation analysis, we found that AMPKα2β2γ1 and p‐Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12‐EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.  相似文献   

13.
BackgroundTriptolide is naturally isolated from Tripterygium wilfordii Hook F., possessing multiple biological activities. Hepatotoxicity is one of the main side effects of triptolide. However, the effect of triptolide on nonalcoholic fatty liver disease remains unknown (NAFLD).PurposeThis study aimed to observe the amelioration of triptolide against NAFLD and investigate the engaged mechanism.MethodsTwo typical animal models of NAFLD, obese db/db mice and methionine/choline-deficient (MCD) diet-fed mice, were used. Hepatic steatosis, inflammation, and fibrosis were evaluated by H&E and Masson staining. Oil red O staining and lipid extraction analysis were used to detect fat content in mice livers. Expression of lipid metabolism, inflammatory and fibrogenic genes was also detected by Real-time PCR and Western blotting, respectively. Phosphoproteomics, molecular docking, and TR-FRET assay were performed to provide further insight into how triptolide improved NAFLD.ResultsIntraperitoneal injection of triptolide at a daily dose of 50 μg/kg significantly alleviated MCD diet-induced nonalcoholic steatohepatitis (NASH), but 100 μg/kg triptolide caused severe hepatotoxicity. Pathological staining confirmed low-dose triptolide treatment reducing hepatic lipid deposition, inflammation, and fibrosis in NASH. Serum biochemical analysis revealed a reduction in the level of liver enzymes and bilirubin. MCD also induced rising expression of typical genes and proteins related to fibrosis (fibronectin, α-SMA, collagens, TGF-β) and inflammation (ILs, TNF-α, MCP-1), which was suppressed by low-dose triptolide. Data from the proteomics/phosphoproteomics and TR-FRET assay indicated triptolide was a potential allosteric AMPK agonist to increase the phosphorylation on Thr172 residue, with the EC50 of 277.78 μM and 231.02 μM for AMPKα1 and AMPKα2, respectively. Moreover, triptolide exhibited an ability to activate AMPK and further led to increasing ACC1 phosphorylation in the liver. The positive results that triptolide ameliorated hepatic lipogenesis, fatty acid oxidation, and fibrosis of NAFLD via activating AMPK were further confirmed in db/db mice with 10-week intervention (50 μg/kg, i.v., twice a week).ConclusionThis study demonstrates that dose-related triptolide as an allosteric AMPK agonist has the potential to alleviate NAFLD without hepatotoxicity.  相似文献   

14.
15.
Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic steatosis, inflammation and liver fibrosis and has become one of the leading causes of hepatocellular carcinoma and liver failure. However, the underlying molecular mechanism of hepatic steatosis and the progression to nonalcoholic steatohepatitis (NASH) are not fully understood. Herein, we discovered that AMPKα2 catalytic subunit showed reduced expression in the liver following high fat diet (HFD) feeding to mice. Importantly, knockout of AMPKα2 in mice aggravated NAFLD, hepatic steatosis, inflammation and fibrosis. On the other hand, hepatocyte-targeted overexpression of AMPKα2 prevented or reversed NAFLD indications. In vivo mechanistic studies revealed that increased phosphorylation of IKKα/β and NF-κB in HFD-fed AMPKα2−/− mice compared to WT mice, and treatment of these mouse cohorts with an inhibitor of NF-κB signaling for 4 weeks, effectively attenuated the progression of steatohepatitis and metabolic disorder features. In summary, AMPKα2 provides a protective role in the process of hepatic steatosis to NASH progression through suppression of liver NF-κB signaling.  相似文献   

16.
Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR‐δ) and the adenosine monophosphate (AMP)‐activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild‐type and PPAR‐δ‐deficient mice. Administration of telmisartan up‐regulated levels of PPAR‐δ and phospho‐AMPKα in cultured myotubes. However, PPAR‐δ gene deficiency completely abolished the telmisartan effect on phospho‐AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post‐exercise oxygen consumption, and increased slow‐twitch skeletal muscle fibres in wild‐type mice, but these effects were absent in PPAR‐δ‐deficient mice. The mechanism is involved in PPAR‐δ‐mediated stimulation of the AMPK pathway. Compared to the control mice, phospho‐AMPKα level in skeletal muscle was up‐regulated in mice treated with telmisartan. In contrast, phospho‐AMPKα expression in skeletal muscle was unchanged in PPAR‐δ‐deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR‐δ as a potential therapeutic target for the prevention of type 2 diabetes.  相似文献   

17.
Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)‐activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express ‐α1, ‐β1, ‐γ1 and ‐γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo‐responsive and ‐resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co‐carboxylase (ACC) and enhanced β‐oxidation of fatty acid and (4) attenuated mTOR‐S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin‐mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK‐ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down‐regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild‐type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti‐proliferative therapeutic that can act through both AMPK‐dependent as well as AMPK‐independent pathways.  相似文献   

18.
Metformin (MET) and genistein (GEN) have a beneficial role in alleviating non-alcoholic fatty liver disease (NAFLD), but their combined effect on this disease has not yet been studied. The present study aimed to investigate the potential protective effects of combined MET and GEN on NAFLD in high-fat diet (HFD) fed mice. C57BL/6 male mice were fed on an HFD for 10 weeks. Animals were then divided into different groups and treated with MET (0.23%), GEN (0.2%) and MET+GEN (0.23% + 0.2%) for 3 months. Treatment with MET and GEN, alone or in combination significantly lowered body and liver weights and fasting blood glucose (FBG) in HFD mice. Combination therapy reduced liver triglyceride (TG) level and this effect was correlated with increased expression of carnitine palmitoyl transferase 1 (CPT1) gene, and reduced expression of fatty-acid synthase (FAS)and sterol regulatory element-binding protein-1c (SREBP-1c) genes. Combination therapy also affects gluconeogenesis pathway through decreasing expression of Glucose 6-phosphatase (G6Pase) and increasing phosphorylation of Glycogen synthase kinase 3β (GSK-3β). Furthermore, combination of MET and GEN ameliorates liver inflammation by switching macrophage into M2 phenotype, decreasing macrophage infiltration, reducing expression of pro-inflammatory cytokines and decreasing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. In addition, combination therapy enhances phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Taken together, these findings suggest that the combination of MET and GEN have beneficial effects against NAFLD in HFD-fed model.  相似文献   

19.
Microglia‐mediated neuroinflammation plays a dual role in various brain diseases due to distinct microglial phenotypes, including deleterious M1 and neuroprotective M2. There is growing evidence that the peroxisome proliferator‐activated receptor γ (PPARγ) agonist rosiglitazone prevents lipopolysaccharide (LPS)‐induced microglial activation. Here, we observed that antagonizing PPARγ promoted LPS‐stimulated changes in polarization from the M1 to the M2 phenotype in primary microglia. PPARγ antagonist T0070907 increased the expression of M2 markers, including CD206, IL‐4, IGF‐1, TGF‐β1, TGF‐β2, TGF‐β3, G‐CSF, and GM‐CSF, and reduced the expression of M1 markers, such as CD86, Cox‐2, iNOS, IL‐1β, IL‐6, TNF‐α, IFN‐γ, and CCL2, thereby inhibiting NFκB–IKKβ activation. Moreover, antagonizing PPARγ promoted microglial autophagy, as indicated by the downregulation of P62 and the upregulation of Beclin1, Atg5, and LC3‐II/LC3‐I, thereby enhancing the formation of autophagosomes and their degradation by lysosomes in microglia. Furthermore, we found that an increase in LKB1–STRAD–MO25 complex formation enhances autophagy. The LKB1 inhibitor radicicol or knocking down LKB1 prevented autophagy improvement and the M1‐to‐M2 phenotype shift by T0070907. Simultaneously, we found that knocking down PPARγ in BV2 microglial cells also activated LKB1–AMPK signaling and inhibited NFκB–IKKβ activation, which are similar to the effects of antagonizing PPARγ. Taken together, our findings demonstrate that antagonizing PPARγ promotes the M1‐to‐M2 phenotypic shift in LPS‐induced microglia, which might be due to improved autophagy via the activation of the LKB1–AMPK signaling pathway.  相似文献   

20.
The AMPK cascade is a sensor of cellular energy change, which monitors the AMP/ATP ratio to regulate cellular metabolism by restoring ATP levels, but its regulation of neuroinflammation mechanism remains unclear. Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been shown to improve several metabolic disorders, such as obesity and type II diabetes. However, the effect of berberine on neuroinflammatory responses in microglia are poorly understood. This study shows that berberine represses proinflammatory responses through AMP‐activated protein kinase (AMPK) activation in BV‐2 microglia. Our findings also demonstrate that berberine significantly down‐regulates LPS‐ or interferon (IFN)‐γ‐induced nitric oxide synthase (iNOS) and cyclo‐oxygenase‐2 (COX‐2) expression in BV‐2 microglia cells. Berberine also inhibited LPS‐ or IFN‐γ‐induced nitric oxide production. In addition, berberine effectively inhibited proinflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 expression. On the other hand, upon various inflammatory stimulus including LPS and IFN‐γ, berberine suppressed the phosphorylated of ERK but not p38 and JNK in BV‐2 microglia. AMPK activation is catalyzed by upstream kinases such as LKB1 and Ca2+/calmodulin‐dependent protein kinase kinase‐II (CaMKK II). Moreover, berberine induced LKB1 (Ser428), CaMKII (Thr286), and AMPK (Thr172) phosphorylation, but not AMPK (Ser485). Furthermore, the inhibitory effect of berberine on iNOS and COX‐2 expression was abolished by AMPK inhibition via Compound C, an AMPK inhibitor. Berberine‐suppressed ERK phosphorylation was also reversed by Compound C treatment. Our data demonstrate that berberine significantly induces AMPK signaling pathways activation, which is involved in anti‐neuroinflammation. J. Cell. Biochem. 110: 697–705, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号