首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Lmx1b‐lacZ expression (blue) highlights dorsal‐restricted expression in limb bud mesenchyme of the mouse embryo. See the paper by Qiu and Johnson in this issue.  相似文献   

2.
3.
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1.  相似文献   

4.
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT 1A autoreceptors within the dorsal raphe nucleus (DRN). We investigated whether this receptor adaptation also occurs upon NK1 receptor blockade. C57B/L6J mice were treated for 21 days with the selective NK1 receptor antagonist GR 205171 (10 mg/kg daily) through subcutaneously implanted osmotic mini pumps, and DRN 5-HT 1A autoreceptor functioning was assessed using various approaches. Recording of DRN serotonergic neurons in brainstem slices showed that GR 205171 treatment reduced (by approximately 1.5 fold) the potency of the 5-HT 1A receptor agonist, ipsapirone, to inhibit cell firing. In parallel, the 5-HT 1A autoreceptor-mediated [35S]GTP-gamma-S binding induced by 5-carboxamidotryptamine onto the DRN in brainstem sections was significantly decreased in GR 205171-treated mice. In vivo microdialysis showed that the cortical 5-HT overflow caused by acute injection of the SSRI paroxetine (1 mg/kg) was twice as high in GR 205171-treated as in vehicle-treated controls. In the DRN, basal 5-HT outflow was significantly enhanced by GR 205171 treatment. These data supported the hypothesis that chronic NK1 receptor blockade induces a functional desensitization of 5-HT 1A autoreceptors similar to that observed with SSRIs.  相似文献   

5.
Transient receptor potential channel type V (TRPV) 1 is a non-selective cation channel that can be activated by capsaicin, endogenous vanilloids, heat and protons. The human TRPV1 splice variant, TRPV1b, lacking exon 7, was cloned from human dorsal root ganglia (DRG) RNA. The expression profile and relative abundance of TRPV1b and TRPV1 in 35 different human tissues were determined by quantitative RT-PCR using isoform-specific probes. TRPV1b was most abundant in fetal brain, adult cerebellum and DRG. Functional studies using electrophysiological techniques showed that recombinant TRPV1b was not activated by capsaicin (1 microM), protons (pH 5.0) or heat (50 degrees C). However, recombinant TRPV1b did form multimeric complexes and was detected on the plasma membrane of cells, demonstrating that the lack of channel function was not due to defects in complex formation or cell surface expression. These results demonstrate that exon 7, which encodes the third ankyrin domain and 44 amino acids thereafter, is required for normal channel function of human TRPV1. Moreover, when co-expressed with TRPV1, TRPV1b formed complexes with TRPV1, and inhibited TRPV1 channel function in response to capsaicin, acidic pH, heat and endogenous vanilloids, dose-dependently. Taken together, these data support the hypothesis that TRPV1b is a naturally existing inhibitory modulator of TRPV1.  相似文献   

6.
Yang X  Han JQ  Liu R 《生理学报》2008,60(1):143-148
本文旨在探讨肠道局部炎症对脊髓肠道感觉传入神经通路的近期及远期效应,应用三硝基苯磺酸(trinitrobenzenesulfonic acid,TNBS)建立大鼠结肠炎动物模型,用DiI(3)逆行神经标记法识别支配肠道炎症部位的脊髓背根神经节(dorsalrootganglia,DRG)神经元,通过肉眼观察、平均组织损伤评分及髓过氧化物酶活性测定等方法评价肠道组织的炎症反应状态,用免疫组织化学法测定香草酸受体l(vanilloid receptor 1,VRl)和降钙素基因相关肽(calcitonin gene-related peptide,CGRP)在支配结肠炎症部位的DRG神经元中的表达,比较炎症不同阶段(给予TNBS后7、21、42 d)CGRP和VRI阳性神经元的数目.结果显示,炎症急性期(即给予TNBS后7 d)结肠黏膜肉眼可见明显损伤,同时相应DRG中表达CGRP及VRl的神经元增加近2倍[(95.38±9.45)%VS(42.86±5.02)%,(89.23±8.21)%VS(32.54±4.58)%].给予TNBS后21、42 d,肠道炎症反应已完全消退,但表达CGRP及VRl的DRG神经元数目仍明显高于对照组[(86.25±8.21)%,(68.28±7.12)%VS(42.86±5.02)%;(67.22±6.52)%,(56.25±4.86)%VS(32.54±4.58)%].结果提示,肠道局部炎症可以上调支配肠道的脊髓传入神经元中CGRP和VRl的表达,这种异常表达可以持续至肠道炎症反应消退后的一定时间.  相似文献   

7.
Signals generated by renal pelvic afferent nerves in response to stimulation are transmitted from peripheral processes of dorsal root ganglia neurons to their central terminals in the dorsal horn of the spinal cord to cause the release of neuropeptides, including SP and CGRP. All of the cellular activities of SP are considered to be mediated through interaction with NK1R located on the cell surface. We have investigated the colocalization and subcellular distribution of NK1R, SP, and CGRP in different subpopulations of neurons that innervate renal tissue. Our findings therefore provide the first evidence for the presence of NK1R, SP, and CGRP in the nuclei of DGR neural cells. The physiological significance of this localization remains unknown. One possibility is that pelvic sensory neurons may regulate their responses to different stimuli by modulating the ratio of CGRP and SP release and/or nuclear NK1R expression.  相似文献   

8.
We examined the effects of TRPV1 agonists olvanil and piperine on glutamatergic spontaneous excitatory transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices with the whole-cell patch-clamp technique. Bath-applied olvanil did not affect the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC), and unchanged holding currents at −70 mV. On the other hand, superfusing piperine reversibly and concentration-dependently increased sEPSC frequency (half-maximal effective concentration: 52.3 μM) with a minimal increase in its amplitude. This sEPSC frequency increase was almost repetitive at an interval of more than 20 min. Piperine at a high concentration produced an inward current in some neurons. The facilitatory effect of piperine was blocked by TRPV1 antagonist capsazepine. It is concluded that piperine but not olvanil activates TRPV1 channels in the central terminals of primary-afferent neurons, resulting in an increase in the spontaneous release of l-glutamate onto SG neurons.  相似文献   

9.
To examine mechanisms underlying substance P (SP) release from primary sensory neurons in response to activation of the non-selective cation channel transient receptor potential ankyrin 1 (TRPA1), SP release from cultured rat dorsal root ganglion neurons was measured, using radioimmunoassay, by stimulating TRPA1 with allyl isothiocyanate (AITC), a TRPA1 agonist. AITC-evoked SP release occurred in a concentration- and time-dependent manner. Interestingly, p38 mitogen-activated protein kinase (p38) inhibitor SB203580 significantly attenuated AITC-evoked SP release. The in vivo effect of AITC-evoked SP release from primary sensory neurons in mice was evaluated. Hind paw intraplantar injection of AITC induced nociceptive behaviors and inflammation (edema, thermal hyperalgesia). AITC-induced thermal hyperalgesia and edema were inhibited by intraplantar pre-treatment with either SB203580 or neurokinin-1 receptor antagonist CP96345. Moreover, intrathecal pre-treatment with either CP96345 or SB203580 inhibited AITC-induced nociceptive behaviors and thermal hyperalgesia. Immunohistochemical studies demonstrated that intraplantar AITC injection induced the phosphorylation of p38 in mouse dorsal root ganglion neurons containing SP. These findings suggest that activation of TRPA1 evokes SP release from the primary sensory neurons through phosphorylation of p38, subsequent nociceptive behaviors and inflammatory responses. Furthermore, the data also indicate that blocking the effects of TRPA1 activation at the periphery leads to significant antinociception.  相似文献   

10.
11.
The aim of the present study was to test the hypothesis that there is a convergence of afferent inputs from the temporomandibular joint (TMJ) on C1 spinal neurons responding to electrical stimulation of the tooth pulp (TP). In 14 pentobarbital anesthetized rats, the extracellular single unit activity of 31 C1 spinal neurons and the amplitude in a digastric muscle electromyogram (n = 31) increased proportionally during 1.0-3.5 times the threshold for the jaw-opening reflex (JOR). Of 31 C1 spinal neurons responsive to TP afferents, 28 (approximately 90%) were also excited by electrical stimulation of the ipsilateral TMJ capsule. All neurons tested were divided into three categories of nociceptive specific, wide dynamic range and non-responsive as to their responsiveness to mechanical stimuli (pin prick and touch) of the somatic receptive field (skin of the face, neck, jaw and upper forearm) and TMJ capsule. Nineteen (68%) of 28 C1 spinal neurons received nociceptive information from C fibers of the TMJ capsule. These results suggest that there is a convergence of noxious information from the TMJ and TP afferents on the same C1 spinal neurons, which importantly contribute to pain perception from the TMJ region.  相似文献   

12.
目的:采用2型糖尿病神经病理性痛大鼠,探讨其脊髓背角小胶质细胞极化情况以及消退素D1(RvD1)缓解大鼠2型糖尿病神经病理性痛的机制。方法:雄性SD大鼠高糖高脂饲养,腹腔注射链脲佐菌素(STZ),制备大鼠2型糖尿病神经病理性痛模型。将2型糖尿病神经病理性痛大鼠随机分为3组(n=36):2型糖尿病神经病理性痛组(D组)、2型糖尿病神经病理性痛注射RvD1组(R组)和溶剂对照组(S组)。R、S组分别于注射STZ 14 d后蛛网膜下腔置管,3 d后R、S组分别给予RvD1 10μl(10 ng/μl)和100%乙醇10μl,每天1次,连续14 d,D组不做任何处理。另取36只正常大鼠为正常对照组(N组),普通饲料喂养。鞘内给药后第1、3、7、14天时测定机械缩足阈值(MWT)和热缩足潜伏期(TWL),各组随机取9只大鼠处死,取L4-6脊髓膨大,采用Western blot法检测小胶质细胞M1、M2型极化标记物,即诱导型一氧化氮合酶(iNOS)、精氨酸酶1(Arg1)的表达。结果:与N组比较,D、S组第1、3、7、14天时MWT降低、TWL缩短,脊髓背角Arg1表达减少,iNOS表达增多(P < 0.05);与D组比较,R组第7、14天时MWT升高、TWL延长,脊髓背角Arg1表达增多,iNOS表达减少(P < 0.05);D组与S组各指标比较差异无统计学意义。结论:RvD1促进小胶质细胞M2型极化并缓解大鼠2型糖尿病神经病理性痛。  相似文献   

13.
It has previously been observed that expression of chemokine monocyte chemoattractant protein-1 (MCP-1/CC chemokine ligand 2 (CCL2)) and its receptor CC chemokine receptor 2 (CCR2) is up-regulated by dorsal root ganglion (DRG) neurons in association with rodent models of neuropathic pain. MCP-1 increases the excitability of nociceptive neurons after a peripheral nerve injury, while disruption of MCP-1/CCR2 signaling blocks the development of neuropathic pain, suggesting MCP-1 signaling is responsible for heightened pain sensitivity. To define the mechanisms of MCP-1 signaling in DRG, we studied intracellular processing, release, and receptor-mediated signaling of MCP-1 in DRG neurons. We found that in a focal demyelination model of neuropathic pain both MCP-1 and CCR2 were up-regulated by the same neurons including transient receptor potential vanilloid receptor subtype 1 (TRPV1) expressing nociceptors. MCP-1 expressed by DRG neurons was packaged into large dense-core vesicles whose release could be induced from the soma by depolarization in a Ca2+-dependent manner. Activation of CCR2 by MCP-1 could sensitize nociceptors via transactivation of transient receptor potential channels. Our results suggest that MCP-1 and CCR2, up-regulated by sensory neurons following peripheral nerve injury, might participate in neural signal processing which contributes to sustained excitability of primary afferent neurons.  相似文献   

14.
15.
Prrxl1-CreER(T2) transgenic mice expressing tamoxifen-inducible Cre recombinase were generated by modifying a Prrxl1-containing BAC clone. Cre recombination activity was examined in Prrxl1-CreER(T2); Rosa26 reporter mice at various embryonic and postnatal stages. Pregnant mice were treated with a single dose of tamoxifen at embryonic day (E) 9.5 or E12.5, and X-gal staining was performed 2 days later. Strong X-gal staining was observed in the somatosensory ganglia (e.g., dorsal root and trigeminal ganglia) and the first central sites for processing somatosensory information (e.g., spinal dorsal horn and trigeminal nerve-associated nuclei). When tamoxifen was administered at postnatal day (P) 20 or in adulthood (P120), strong Cre recombination activity was present in the primary somatosensory ganglia, while weak Cre recombination activity was found in the spinal dorsal horn, mesencephalic trigeminal nucleus, principal sensory trigeminal nucleus, and spinal trigeminal nucleus. This mouse line provides a useful tool for exploring genes' functions in the somatosensory system in a time-controlled way.  相似文献   

16.
Contactin-2/transiently expressed axonal surface glycoprotein-1 (TAG-1) is a cell adhesion molecule belonging to the immunoglobulin superfamily (IgSF). It has six immunoglobulin-like extracellular domains and four fibronectin III-like ones, with anchoring to the cell membrane through glycosylphosphatidyl inositol. Contactin-2/TAG-1 is expressed in specific neurons transiently on the axonal surface during the fetal period. In postnatal stages, Contactin-2/TAG-1 is expressed in cerebellar granule cells, hippocampal pyramidal cells, and the juxtaparanodal regions of myelinated nerve fibers. In the embryonic nervous system, Contactin-2/TAG-1 plays important roles in axonal elongation, axonal guidance, and cellular migration. In the postnatal nervous system, it also plays an essential role in the formation of myelinated nerve fibers. Moreover, Contactin-2/TAG-1 has been linked to autoimmune diseases of the human nervous system. Taken together, Contactin-2/TAG-1 plays a central role in a variety of functions from development to disease.  相似文献   

17.
In the dorsal raphe nucleus (DR), extracellular serotonin (5-HT) regulates serotonergic transmission through 5-HT1A autoreceptors. In this work we used in vivo microdialysis to examine the effects of stressful and pharmacological challenges on DR 5-HT efflux in 5-HT1A receptor knockout (5-HT1A-/-) mice and their wild-type counterparts (5-HT1A+/+). Baseline 5-HT concentrations did not differ between both lines of mice, which is consistent with a lack of tonic control of 5-HT1A autoreceptors on DR 5-HT release. (R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT, 0.5 mg/kg) reduced 5-HT levels to 30% of basal values in 5-HT1A+/+ mice, but not in 5-HT1A-/- mice. The selective 5-HT1B receptor agonist 1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrolo[3,2-b]pyridin-5-one dihydrochloride (CP 93129, 300 micro m) reduced dialysate 5-HT to the same extent (30-40% of baseline) in the two genotypes, which suggests a lack of compensatory changes in 5-HT1B receptors in the DR of such mutant mice. Both a saline injection and handling for 3 min increased DR dialysate 5-HT in mutants, but not in 5-HT1A+/+ mice. Fluoxetine (5 and 20 mg/kg) elevated 5-HT in a dose-dependent manner in both genotypes. However, this effect was markedly more pronounced in the 5-HT1A-/- mice. The increased responsiveness of the extracellular 5-HT in the DR of 5-HT1A receptor knockout mice reflects a lack of the autoinhibitory control exerted by 5-HT1A autoreceptors.  相似文献   

18.
19.
20.
《Cell reports》2023,42(9):113078
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号