首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

2.
Ecological aspects of the mongoose (Herpestes javanicus) were studied in the Luquillo Mountains, a rain forest region in eastern Puerto Rico. Information was obtained by removal trapping of mongoose from grids placed in tree plantations, colorado and tabonuco forests. Trapping efficiency was two mongoose per 100 trap-days, suggesting mongoose abundance is low in wet montane forests of Puerto Rico. Sex ratio was biased (2.6:1) in favor of males. Body masses of male mongoose inhabiting rain forests of the Luquillo Mountains were larger than those in dry forests at Guánica (P < 0.0001). Stomach contents from 18 mongoose were examined, animal matter comprised 75 percent of the total food items encountered. Of these, 33 percent were from vertebrates. The food items most frequently encountered were lizards (Anolis spp.), centipedes (Scolopendra spp.), and cockroaches (Blatellidae).  相似文献   

3.
Juvenile survival is a highly variable life‐history trait that is critical to population growth. Antipredator tactics, including an animal's use of its physical and social environment, are critical to juvenile survival. Here, we tested the hypothesis that habitat and social characteristics influence coyote (Canis latrans) predation on white‐tailed deer (Odocoileus virginianus) and mule deer (O. hemionus) fawns in similar ways during the neonatal period. This would contrast to winter when the habitat and social characteristics that provide the most safety for each species differ. We monitored seven cohorts of white‐tailed deer and mule deer fawns at a grassland study site in Alberta, Canada. We used logistic regression and a model selection procedure to determine how habitat characteristics, climatic conditions, and female density influenced fawn survival during the first 8 weeks of life. Fawn survival improved after springs with productive vegetation (high integrated Normalized Difference Vegetation Index values). Fawns that used steeper terrain were more likely to survive. Fawns of both species had improved survival in years with higher densities of mule deer females, but not with higher densities of white‐tailed deer females, as predicted if they benefit from protection by mule deer. Our results suggest that topographical variation is a critical resource for neonates of many ungulate species, even species like white‐tailed deer that use more gentle terrain when older. Further, our results raise the possibility that neonatal white‐tailed fawns may benefit from associating with mule deer females, which may contribute to the expansion of white‐tailed deer into areas occupied by mule deer.  相似文献   

4.
Harvest of Brazil nuts from the large, iconic tree Bertholletia excelsa generates substantial income for smallholders, providing a strong incentive to conserve the mature forests where it grows. Although much previous work has focused on the impact of nut harvest on new seedling recruits into B. excelsa populations, the connection between harvest rates and long‐term population stability is still unclear. Moreover, there is additional uncertainty for Brazil nut management in terms of population response to climate change and other anthropogenic influences. We drew on 14 years of research in two sites in Acre, Brazil with different B. excelsa nut harvest intensities (39% and 81%), to produce stochastic and deterministic matrix population models which incorporated parameter uncertainty in vital rates. Adult abundance was projected to remain close to the current observed abundance or higher through the next 50 years. Elasticity analyses revealed that the asymptotic population growth rate (λ) was most sensitive to stasis vital rates in sapling, juvenile, and adult stages. Deterministic transition matrices calculated using diameter growth rates dependent on rainfall yielded average λ values around 1.0 under extreme high, extreme low, and average annual rainfall. While sustained high rates of Brazil nut harvest and climate change could potentially negatively impact B. excelsa populations, changes in human use of the forested landscape are more immediate concern. To reduce the risk of population decline, smallholders and managers of B. excelsa rich forests should focus on conservation of pre‐mature and mature individuals.  相似文献   

5.
Temporal variation in demographic processes can greatly impact population dynamics. Perturbations of statistical coefficients that describe demographic rates within matrix models have, for example, revealed that stochastic population growth rates (log(λs)) of fast life histories are more sensitive to temporal autocorrelation of environmental conditions than those of slow life histories. Yet, we know little about the mechanisms that drive such patterns. Here, we used a mechanistic, functional trait approach to examine the functional pathways by which a typical fast life history species, the macrodetrivore Orchestia gammarellus, and a typical slow life history species, the reef manta ray Manta alfredi, differ in their sensitivity to environmental autocorrelation if (a) growth and reproduction are described mechanistically by functional traits that adhere to the principle of energy conservation, and if (b) demographic variation is determined by temporal autocorrelation in food conditions. Opposite to previous findings, we found that O. gammarellus log(λs) was most sensitive to the frequency of good food conditions, likely because reproduction traits, which directly impact population growth, were most influential to log(λs). Manta alfredi log(λs) was instead most sensitive to temporal autocorrelation, likely because growth parameters, which impact population growth indirectly, were most influential to log(λs). This differential sensitivity to functional traits likely also explains why we found that O. gammarellus mean body size decreased (due to increased reproduction) but M. alfredi mean body size increased (due to increased individual growth) as food conditions became more favorable. Increasing demographic stochasticity under constant food conditions decreased O. gammarellus mean body size and increased log(λs) due to increased reproduction, whereas M. alfredi mean body and log(λs) decreased, likely due to decreased individual growth. Our findings signify the importance of integrating functional traits into demographic models as this provides mechanistic understanding of how environmental and demographic stochasticity affects population dynamics in stochastic environments.  相似文献   

6.
Among most species of birds, survival from hatching throughout the first year of life is generally lower than subsequent survival rates. Survival of young birds during their first year may depend on a combination of selection, learning, unpredictable resources, and environmental events (i.e., post‐fledging factors). However, knowledge about post‐fledging development in long‐lived species is usually limited due to a lengthy immature stage when individuals are generally unobservable. Therefore, pre‐fledging characteristics are often used to predict the survival of young birds. We assessed effects of nestling growth rates, hatching date, hatching asynchrony, brood size and rank order after brood reduction, and sex on first‐year survival of 137 fledglings using a mark‐resighting analysis. We found that the survival probability (Φ1yr = 0.39) of first‐year Herring Gulls (Larus argentatus) in our study colony located at the outer port of Zeebrugge (Belgium) was lower than that of older individuals (Φ>1yr = 0.75). All 10 models best supported by our data included nestling growth rate, suggesting that variability in first‐year survival may be linked primarily to individual variation in growth. First‐year survival was negatively correlated with hatching date and rank order after brood reduction. Hence, carry‐over effects of breeding season events such as timing of breeding, early development, and social status had an influence on survival of Herring Gulls after fledging. Furthermore, we found sex‐biased mortality in first‐year Herring Gulls, with females (Φ1yr = 0.45) surviving better than males (Φ1yr = 0.38). Although adult survival is generally regarded as the key parameter driving population trajectories in long‐lived species, juvenile survival has recently been acknowledged as an important source of variability in population growth rates. Thus, increasing our knowledge of factors affecting age‐specific survival rates is necessary to improve our understanding of population dynamics and ultimately life‐history variation.  相似文献   

7.
Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897–1.060) and T. punctulata λ = 0.967 (0.815–1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.  相似文献   

8.
Knowledge of demographic parameters affecting population dynamics is critical to the formulation of effective conservation strategies. Sooty Falcon Falco concolor is a little‐studied, Near‐threatened species; estimates of global population size and trend for this species are uncertain. They lay eggs during mid‐summer and sometimes nest in colonies. This unusual breeding ecology suggests that demographic parameters driving their population growth rate may differ from those of most other falcons. We studied Sooty Falcon reproduction at breeding aggregations on Fahal Island and the Daymaniyat islands in the Sea of Oman during 2007–2014, modelled population growth and identified important life history parameters using elasticity analysis. The mean (± se) clutch and brood size was 2.83 ± 0.06 and 2.11 ± 0.07, respectively. Overall, 11.7% of nests failed between the egg and nestling stages, and the failure rate differed significantly between Fahal and the Daymaniyats, and across years. The mean proportion of eggs that hatched annually was 0.66 ± 0.02, and broods were significantly smaller on the Daymaniyats than on Fahal. Falcons on Fahal Island had a higher rate of hatching, a higher rate of nests that produced at least one chick, and produced more chicks per nest than on the Daymaniyats. We suggest that Fahal's proximity to the mainland gives breeding Sooty Falcons access to a more plentiful and stable source of food, especially during the period between arrival from the wintering grounds and the onset of the autumn migration of prey birds, resulting in the better reproductive rates for falcons on Fahal Island, relative to those on the Daymaniyat Islands. The annual asymptotic population growth rate (λ) was 0.87 (95% confidence interval (CI) 0.75–0.99), suggesting a declining population, although Sooty Falcons enjoyed a slightly higher population growth rate on Fahal than on the Daymaniyats. Because our study population is on the edge of the breeding range and is isolated from other breeding areas, measures to improve reproductive success of Sooty Falcons breeding on the islands in the Sea of Oman could be important for conservation of Sooty Falcons in Oman.  相似文献   

9.
Demographic data provide a basis for understanding the life history and ecology of species, factors which are vital for informing conservation efforts; however, little is known regarding the population ecology of most snake species, including the threatened Eastern Indigo Snake (Drymarchon couperi). We used 11 years (1999–2009) of capture-mark-recapture (CMR) and 2.5 years (2003–2005) of radiotelemetry data from southeastern Georgia, USA, in a CMR modeling framework to estimate apparent survival, capture and transition probabilities, and evaluate factors influencing these parameters. The model-averaged estimate of overall apparent annual survival probability was 0.700 (±0.030 SE) and is comparable to that obtained from known fate analysis (radiotelemetry) at the same site. Body size positively influenced survival, regardless of sex. Capture probability differed seasonally by sex, suggesting lower capture probability for females in fall and males in winter. There was no evidence for effect of precipitation or site-specific differences in survival. Model averaged estimate of annual adult survival estimated using multistate CMR models was 0.738 ± 0.030 and 0.515 ± 0.189 for subadults. We estimated population growth rate (λ) and elasticity (proportional sensitivity) of λ to vital rates using a stage-structured matrix population model. Population growth rate ranged from 0.96 to 1.03 depending on the value of the probability of transitioning from subadult to adult stage. The λ was proportionally most sensitive to changes in adult survival rate, followed by subadult survival. Our results suggest that protecting adult snakes and their habitats would result in the highest likelihood of long-term population stability and growth.  相似文献   

10.
We analyzed the population dynamics of a burrowing owl (Athene cunicularia) colony at Mineta San Jose International Airport in San Jose, California, USA from 1990–2007. This colony was managed by using artificial burrows to reduce the occurrence of nesting owls along runways and within major airport improvement projects during the study period. We estimated annual reproduction in natural and artificial burrows and age-specific survival rates with mark–recapture techniques, and we estimated the relative contribution of these vital rates to population dynamics using a life table response experiment. The breeding colony showed 2 distinct periods of change: high population growth from 7 nesting pairs in 1991 to 40 pairs in 2002 and population decline to 17 pairs in 2007. Reproduction was highly variable: annual nesting success (pairs that raised ≥1 young) averaged 79% and ranged from 36% to 100%, whereas fecundity averaged 3.36 juveniles/pair and ranged from 1.43 juveniles/pair to 4.54 juveniles/pair. We estimated annual adult survival at 0.710 during the period of colony increase from 1996 to 2001 and 0.465 during decline from 2002 to 2007, but there was no change in annual survival of juveniles between the 2 time periods. Long-term population growth rate (λ) estimated from average vital rates was λa = 1.072 with λi = 1.288 during colony increase and λd = 0.921 (Δλ = 0.368) during decline. A life table response experiment showed that change in adult survival rate during increasing and declining phases explained more than twice the variation in growth rate than other vital rates. Our findings suggest that management and conservation of declining burrowing owl populations should address factors that influence adult survival. © 2011 The Wildlife Society.  相似文献   

11.
Estimation of population trends and demographic parameters is important to our understanding of fundamental ecology and species management, yet these data are often difficult to obtain without the use of data from population surveys or marking animals. The northeastern Minnesota moose (Alces alces Linnaeus, 1758) population declined 58% during 2006–2017, yet aerial surveys indicated stability during 2012–2017. In response to the decline, the Minnesota Department of Natural Resources (MNDNR) initiated studies of adult and calf survival to better understand cause‐specific mortality, calf recruitment, and factors influencing the population trajectory. We estimated population growth rate (λ) using adult survival and calf recruitment data from demographic studies and the recruitment–mortality (R‐M) Equation and compared these estimates to those calculated using data from aerial surveys. We then projected population dynamics 50 years using each resulting λ and used a stochastic model to project population dynamics 30 years using data from the MNDNR's studies. Calculations of λ derived from 2012 to 2017 survey data, and the R‐M Equation indicated growth (1.02 ± 0.16 [SE] and 1.01 ± 0.04, respectively). However, the stochastic model indicated a decline in the population over 30 years (λ = 0.91 ± 0.004; 2014–2044). The R‐M Equation has utility for estimating λ, and the supporting information from demographic collaring studies also helps to better address management questions. Furthermore, estimates of λ calculated using collaring data were more certain and reflective of current conditions. Long‐term monitoring using collars would better inform population performance predictions and demographic responses to environmental variability.  相似文献   

12.
We used an individual-based population model to perform a viability analysis to simulate population growth (λ) of 167 elk (Cervus elaphus manitobensis; 71 male and 96 female) released in the Cumberland Mountains, Tennessee, to estimate sustainability (i.e., λ > 1.0) and identify the most appropriate options for managing elk restoration. We transported elk from Elk Island National Park, Alberta, Canada, and from Land Between the Lakes, Kentucky, and reintroduced them beginning in December 2000 and ending in February 2003. We estimated annual survival rates for 156 radio-collared elk from December 2000 until November 2004. We used data from a nearby elk herd in Great Smoky Mountains National Park to simulate pessimistic and optimistic recruitment and performed population viability analyses to evaluate sustainability over a 25-year period. Annual survival averaged 0.799 (Total SE = 0.023). The primary identifiable sources of mortality were poaching, disease from meningeal worm (Parelaphostrongylus tenuis), and accidents (environmental causes and unintentional harvest). Population growth given pessimistic recruitment rates averaged 0.895 over 25 years (0.955 in year 1 to 0.880 in year 25); population growth was not sustainable in 100% of the runs. With the most optimistic estimates of recruitment, mean λ increased to 0.967 (1.038 in year 1 to 0.956 in year 25) with 99.6% of the runs failing to be sustainable. We suggest that further translocation efforts to increase herd size will be ineffective unless survival rates are increased in the Cumberland Mountains. © 2011 The Wildlife Society.  相似文献   

13.
Cecropia schreberiana Miq. (Cecropiaceae) is a common tree in the Luquillo Mountains of Puerto Rico because it is a pioneer that establishes abundantly after recurrent hurricanes that damage Luquillo forests. In these forestsC. schreberiana typically reaches about 20 m in height and 60 cm dbh and has few branches, these bearing large, deeply lobed leaves. The wood is light and weak. Unlike most of its congeners,C. schreberiana in Puerto Rico does not have symbiotic ants. It is dioecious and produces wind-pollinated flowers in spikes and abundant minute seeds broadly dispersed by birds and bats. Forest soils contain a high density of its seeds, which lie dormant until canopy opening stimulates germination. With adequate nutrientsC. schreberiana grows fast in high light, while nondominant individuals suffer heavy mortality. An individual of the species is thought to live 30 to 50 years. Cecropia schreberiana is uncommon in abandoned pastures in the Luquillo Mountains. It colonizes road cuts, landslides, and infrequent, large treefall gaps. Yet these disturbances provide only a limited “background regeneration,” which is not sufficient to maintain the species’ observed high abundance in Luquillo forests. However, there is widespread and abundantC. schreberiana regeneration after hurricane damage opens the forest canopy. Despite high mortality among these post-hurricane colonizers, enough survive and grow so thatC. schreberiana is generally among the ten most common canopy trees in the widespread “tabonuco” forest type. Post-hurricane colonizers mature, senesce, and decline in number, butC. schreberiana remains abundant as seeds in the soil ready to form tree cohorts after disturbance. The status of theC. schreberiana population indicates the developmental status of the forest as a whole. Moreover,C. schreberiana performs a key function in the reorganization of Luquillo forest ecosystems after disturbance, when its abundant regeneration and rapid growth capture and store nutrients. Also, its colonizing saplings may facilitate succession to mature forest by excluding grasses, herbs, and vines that hinder forest development. The biology of this species both reflects and helps drive the dynamics of forests in the Luquillo Mountains.  相似文献   

14.
Demographic processes, such as survival, growth, and reproduction, can inform us about invasion risk, extinction risk, and trade-offs in life history strategies. The population dynamics of four Amaranthaceae species in southern Illinois, USA were examined using integral projection models (IPMs) to determine whether vital rates reflect life history among these closely related species. Two of the species, Amaranthus palmeri and Amaranthus tuberculatus, are summer annuals and considered to be some of the most problematic agricultural weeds in the US Midwest. Achyranthes japonica is a relatively new invasive exotic species that primarily inhabits forests. Iresine rhizomatosa, is an endangered species in the study area, which also inhabits forests. Two populations of each species were studied from 2012 to 2014 in which height of individuals were measured and used as the state variable in the IPMs. The Amaranthus species and Achyranthes japonica had an estimated population growth rate >1, projecting increases in population size. By contrast, λ was <1 for I. rhizomatosa, projecting a decline in population size demonstrating its endangered status. Germination rates and seed viability were dependent on species and varied over time. Elasticity analyses showed that survival and growth contributed most to λ for the perennial species; whereas, for the annual species population dynamics were driven primarily by fecundity. Overall, Achyranthes japonica and the Amaranthus species show similar trends in demographic processes that align with their invasive nature and not with their life histories. Furthermore, this study demonstrates that more research on the competitive nature of Achyranthes japonica is needed.  相似文献   

15.
In semi‐arid climates, plant population dynamics are strongly influenced by the amount and temporal distribution of rainfall. We monitored a population of the tree species Cordia oncocalyx (Boraginaceae) for 24 months in the dry thorny woodland of semi‐arid northeastern Brazil, to investigate which life‐history traits allow this tree to be locally dominant. We used horizontal life tables and a Lefkovitch matrix and tested for relationships among demographic parameters of seedling, infant, juvenile, immature, virginile and reproductive ontogenetic stages with rainfall and canopy openness. Germination and recruitment occurred in the rainy months, and dry‐season mortality occurred only in seedlings (76% and 100%, first and second years, respectively) and infants (3% and 6%). Juveniles showed greater height growth under more open canopies (Spearman correlation coefficient = 0.24), suggesting that light availability influences growth. The population growth rate was λ = 1.0336, and the highest sensitivity occurred in the infant‐juvenile transition. Our results show light as a restrictive growth factor for plants in the juvenile stage and confirm the strong influence of rainfall on the dynamics of trees in a seasonally dry environment. The formation of a persistent seed bank with germination concentrated at the rainfall onset but spreading over the rainy season are strategies that hedge bets before establishment. The formation of a bank of infants, which can resume growth as soon as there is water, hedges bets after establishment. We attribute the positive population growth rate of Cordia oncocalyx to survival strategies allowing bet‐hedging both before and after establishment.  相似文献   

16.
The finless porpoise Neophocaena asiaeorientalis inhabits coastal waters and rivers in East Asia and is exposed to various human activities. This species is listed on the IUCN Red List of Threatened Species due to a reduction in abundance. Although human-induced mortality can be a threat to porpoise populations, future anthropogenic impacts have not been quantitatively evaluated due to lack of demographic information. Adequate future population projections are needed to form the basis for conservation measures before the population declines to critical levels. We conducted a population viability analysis for the population of finless porpoise in the Inland Sea, Japan using a Leslie matrix model composed of age-specific survival and fertility rates. We described the uncertainty in the annual rate of increase (λ) for the finless porpoise using randomly sampled estimates of survival rate for other cetaceans with similar life histories. Plausible median estimates of λ ranged from 1.041 (age at first reproduction [AFR] = 7) to 1.056 (AFR = 5). Future population changes and extinction probabilities were predicted after combining these estimates with a predicted human-induced mortality rate (M) and available abundance estimates. The extinction probability after 100 years was 0 %. However, the probability of the quasi-extinction (<100 individuals) was as high as 79.0 % after 100 years. The results also suggest that the persistence of the finless porpoise population could be achieved with a small effort to reduce anthropogenic mortality.  相似文献   

17.
Demographic studies of imperiled populations can aid managers in planning conservation actions. However, applicability of findings for a single population across a species’ range is sometimes questionable. We conducted long-term studies (8 and 9 years, respectively) of 2 populations of the lizard Phrynosoma cornutum separated by 1000 km within the historical distribution of the species. The sites were a 15-ha urban wildlife reserve on Tinker Air Force Base (TAFB) in central Oklahoma and a 6000-ha wildland site in southern Texas, the Chaparral Wildlife Management Area (CWMA). We predicted a trade-off between the effect of adult survival and fecundity on population growth rate (λ), leading to population-specific contributions of individual vital rates to λ and individualized strategies for conservation and management of this taxon. The CWMA population had lower adult survival and higher fecundity than TAFB. As predicted, there was a trade-off in the effects of adult survival and fecundity on λ between the two sites; fecundity affected λ more at CWMA than at TAFB. However, adult survival had the smallest effect on λ in both populations. We found that recruitment in P. cornutum most affected λ at both sites, with hatchling survival having the strongest influence on λ. Management strategies focusing on hatchling survival would strongly benefit both populations. As a consequence, within the constraint of the need to more accurately estimate hatchling survival, managers across the range of species such as P. cornutum could adopt similar management priorities with respect to stage classes, despite intra-population differences in population vital rates.  相似文献   

18.
Balancing forest conservation with resource extraction by local people is challenging. In the mountain forests of Bwindi Impenetrable National Park in Uganda, this was addressed by permitting regulated access to certain forest products in specific areas by authorized local people. However, it remained unclear whether harvest levels were biologically sustainable. Here, we used matrix population models and long‐term data to examine the impacts of bark harvesting on population dynamics of two important medicinal plants, Rytigynia kigeziensis and Ocotea usambarensis, in Bwindi. Only 4% of R. kigeziensis and 3% of O. usambarensis stems (>1.3 m height) showed signs of bark harvest, mostly mild harvesting. We found that the harvested populations of both species appeared stable or will moderately grow in the long run. Modelled population growth rates were mostly determined by survival probabilities. Similarity between the stable stage distributions predicted by the model and observed population structures suggests that our estimated vital rates (growth, recruitment and survival rates) are a reasonable representation of actual values in these populations. Thus, recent harvest levels of R. kigeziensis and O. usambarensis appear sustainable. Nonetheless, monitoring of harvested and unharvested populations by tagging, marking and remeasuring individuals should continue for both species.  相似文献   

19.
Differences in the survival rates of males and females over the period from hatching to recruitment can have important impacts on individual fitness and population demographics. However, whilst the influence of an individual's sex on nestling growth and survival has been well studied, less is known about sex‐specific survival over the period between fledging and recruitment. Here, we analyse nestling survival and recruitment in an isolated, island population of house sparrows (Passer domesticus), using data collected over a 4‐year period. Nestlings that had a greater mass at 1 day old were more likely to fledge. Recruitment was also positively associated with day 11 mass. The positive influence of nestling mass on survival to fledging also increased as brood size increased. There was no difference in the survival of male and female individuals prior to fledging. In contrast, over the period from fledging to recruitment, females had significantly less mortality than males. Recruitment was also positively associated with 11‐day‐old mass. Neither the nestling sex ratio nor the fledging sex ratio deviated from 0.5, but the sex ratio amongst recruits was female biased. Our study shows that sex can influence juvenile survival, but also shows that its effect varies between different life‐history stages; therefore, these stages should be considered separately if we want to understand at what point sex‐specific differences in juvenile survival occur. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 680–688.  相似文献   

20.
To design feasible conservation and management policies for wild species, it is critical to understand the effects of periodic disturbances, be they natural or anthropogenic. The Caribbean Basin is characterized by high cyclonic activity that has a strong impact on the demography and population dynamics of many taxa, including epiphytic orchids. We conducted a 5‐yr study of rare ghost orchid demography, Dendrophylax lindenii, to assess the stability of a protected population of this species in Cuba. Using both stochastic and deterministic integral projection models, we found that mean annual population growth rates are negative (λ = 0.975). However, we found both population growth rate and extinction risk are highly sensitive to survival rates and reproduction, a difficult to quantify rate for many orchids including our study species. While this species is fairly long‐lived, its relatively slow increase in annual survival with increasing size may reflect the lack of a protected (i.e., subterranean) storage organ—a life‐history trait that may typify other epiphytic species and increase susceptibility to disturbance events. Hurricanes, which are predicted to increase in frequency as a result of climate change, dramatically increase adult mortality. Simulations of these effects indicate that hurricanes and similar disturbances could result in near certain extinction in short time horizons (25 yr) if their annual probability of occurrence exceeds 14 percent. These results suggest a need to better quantify recruitment rates, as well as the sensitivity of population dynamics of this and other orchid species to hurricanes and other periodic disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号