首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anticipated impacts of climate change on aquatic biota are difficult to evaluate because of potentially contrasting effects of temperature and hydrology on lake ecosystems, particularly those closed‐basin lakes within semiarid regions. To address this shortfall, we quantified decade‐scale changes in chemical and biological properties of 20 endorheic lakes in central North America in response to a pronounced transition from a drought to a pluvial period during the early 21st century. Lakes exhibited marked temporal changes in chemical characteristics and formed two discrete clusters corresponding to periods of substantially different effective moisture (as Palmer Drought Severity Index, PDSI). Discriminant function analysis (DFA) explained 90% of variability in fish assemblage composition and showed that fish communities were predicted best by environmental conditions during the arid interval (PDSI 相似文献   

2.
3.
There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake‐to‐lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate.  相似文献   

4.
5.
Climate change and invasive species are two stressors that should have large impacts on native species in aquatic and terrestrial ecosystems. We quantify and integrate the effects of climate change and the establishment of an invasive species (smallmouth bass Micropterus dolomieu ) on native lake trout Salvelinus namaycush populations. We assembled a dataset of almost 22 000 Canadian lakes that contained information on fish communities, lake morphologies, and geography. We examined the pelagic-benthic and littoral forage fish community available to lake trout populations across three lake size classes in these aquatic ecosystems. Due to the decreased presence of alternate prey resources, lake trout populations residing in smaller lakes are more vulnerable to the effects of smallmouth bass establishment. A detailed spatially and temporally explicit approach to assess smallmouth bass invasion risk in Ontario lakes suggests that the number of Ontario lakes with vulnerable lake trout populations could increase from 118 (~1%) to 1612 (~20%) by 2050 following projected climate warming. In addition, we identified nearly 9700 lake trout populations in Canada threatened by 2100, by the potential range expansion of smallmouth bass. Our study provides an integration of two major stressors of ecosystems, namely climate change and invasive species, by considering climate-change scenarios, dispersal rates of invasive species, and inter-specific biotic interactions.  相似文献   

6.

Aim

The spatial distribution of ectotherms is strongly dependent on the temperature of their environments. In temperate lakes, fishes with different thermal optima can become spatially segregated during summer stratification. This habitat partitioning, or niche complementarity, may play a role in the coexistence of trophically similar species; however, the extent of partitioning is dependent on the resources available within each habitat. Although habitat partitioning of fish thermal guilds has been studied in individual lakes, broad-scale patterns of spatial overlap and segregation are not yet understood. In this study, we explore the patterns and drivers of spatial overlap among thermal guilds (cold-, cool-, and warm-water) at a broad scale.

Location

Ontario, Canada.

Methods

We built a multivariate regression tree to explore patterns and environmental drivers of spatial overlap in freshwater fishes across three thermal guilds from 438 lakes.

Results

We identified five clusters of lakes exhibiting different patterns of spatial overlap among the three thermal guilds. Temperature (growing degree days) and maximum lake depth were strong drivers of the spatial overlap patterns.

Main Conclusions

These findings provide a better understanding of broad-scale patterns of spatial overlap and allow us to predict how spatial overlap, and ultimately species interactions and competition, may change under a warming climate.  相似文献   

7.
Due to global climate change–induced shifts in species distributions, estimating changes in community composition through the use of Species Distribution Models has become a key management tool. Being able to determine how species associations change along environmental gradients is likely to be pivotal in exploring the magnitude of future changes in species’ distributions. This is particularly important in connectivity-limited ecosystems, such as freshwater ecosystems, where increased human translocation is creating species associations over previously unseen environmental gradients. Here, we use a large-scale presence–absence dataset of freshwater fish from lakes across the Fennoscandian region in a Joint Species Distribution Model, to measure the effect of temperature on species associations. We identified a trend of negative associations between species tolerant of cold waters and those tolerant of warmer waters, as well as positive associations between several more warm-tolerant species, with these associations often shifting depending on local temperatures. Our results confirm that freshwater ecosystems can expect to see a large-scale shift towards communities dominated by more warm-tolerant species. While there remains much work to be done to predict exactly where and when local extinctions may take place, the model implemented provides a starting-point for the exploration of climate-driven community trends. This approach is especially informative in regards to determining which species associations are most central in shaping future community composition, and which areas are most vulnerable to local extinctions.  相似文献   

8.
9.

Aim

Many freshwater fishes are migrating poleward to more thermally suitable habitats in response to warming climates. In this study, we aimed to identify which freshwater fishes are most sensitive to climatic changes and asked: (i) how fast are lakes warming? (ii) how fast are fishes moving? and (iii) are freshwater fishes tracking climate?

Location

Ontario, Canada.

Methods

We assembled a database containing time series data on climate and species occurrence data from 10,732 lakes between 1986 and 2017. We calculated the rate of lake warming and climate velocity for these lakes. Climate velocities were compared with biotic velocities, specifically the rate at which the northernmost extent of each species shifted north.

Results

Lakes in Ontario warmed by 0.2°C decade−1 on average, at a climate velocity of 9.4 km decade−1 between 1986 and 2017. In response, some freshwater fishes have shifted their northern range boundaries with considerable interspecific variation ranging from species moving southwards at a rate of −58.9 km decade−1 to species ranges moving northwards at a rate of 83.6 km decade−1 over the same time period. More freshwater fish species are moving into northern lakes in Ontario than those being lost. Generally, predators are moving their range edges northwards, whereas prey fishes are being lost from northern lakes.

Main Conclusions

The concurrent loss of cooler refugia, combined with antagonistic competitive and predatory interactions with the range expanding species, has resulted in many commercially important predators moving their range edges northwards, whereas prey species have contracted their northern range edge boundaries. Trophic partitioning of range shifts highlights a previously undocumented observation of the loss of freshwater fishes from lower trophic levels in response to climate-driven migrations.  相似文献   

10.
根据2008年5月至2011年1月对松嫩湖群20个主要渔业湖泊的鱼类资源调查,分析了该湖群鱼类区系特征和群落相似性状况。松嫩湖群的鱼类区系由4目9科34属46种和亚种构成,其中土著鱼类3目8科27属39种和亚种,包括中国特有种3种,中国易危种1种,冷水种5种;由5个区系复合体构成,以东部江河平原区系复合体为主体;鲤形目31种,鲤科26种,分别占优势;鱼类区系具有南北方物种相互渗透、古北界与东洋界交汇过渡的混色类群特征。目前松嫩湖群鱼类群落种类组成的相似度总体较低,群落数量结构的相似度总体较高,鱼类群落相似性面临的主要问题是自然与人为因素导致湖泊生态环境的变化和放养、移殖与过度捕捞导致鱼类资源的减少与小型化,二者的叠加效应使鱼类群落长期处于受损状态,群落结构及其相似性处在动态变化中,群落内种间关系的协调性、种群结构的合理性和群落结构的稳定性均在下降。针对这些情况和群落相似性现状,提出未来松嫩湖群湖泊渔业的发展方向是优化调整群落结构,发展多种群湖泊渔业,合理利用土著鱼类资源。  相似文献   

11.
Aim To compare patterns and drivers of freshwater fish introductions across five climatically similar regions and evaluate similarities and differences in the non‐native species introduced. Location Five mediterranean‐climate regions: California (USA), central Chile, south‐western Australia, the Iberian peninsula (Spain and Portugal) and the south‐western Cape (South Africa). Methods Species presence–absence for native and non‐native fishes were collated across the regions, and patterns of faunal change were examined using univariate and multivariate statistical approaches. Taxonomic patterns in freshwater fish introductions were evaluated by comparing the number of species introduced by order to the numbers expected from binomial probabilities. Factors influencing multiple introductions of freshwater fish species in mediterranean regions were determined using generalized linear modelling. Results High levels of endemism (70–90%) were revealed for south‐western Cape, south‐western Australia and Chile. Despite their high rates of endemism, all regions currently have more non‐native species than endemic species. Taxonomic selection was found for five orders, although this was only significant for Salmoniformes across regions. The average increase in regional compositional similarity of fish faunas resulting from non‐native fish introductions was 8.0%. Important factors predicting multiple introductions of a species include previous introduction success and mean latitude of its distribution Main conclusions The mediterranean‐climate regions of the world, separated by vast distances, originally had a few fish species in common but are now more similar, owing to species introductions, illustrating the extent and importance of taxonomic homogenization. Introductions are largely driven by taxonomically biased human interests in recreational fisheries, aquaculture and ornamental pet species.  相似文献   

12.
1. Shallow lakes in the Boreal Transition Zone (BTZ) in Alberta, Canada are naturally productive systems that provide important breeding and moulting habitat for many waterfowl (Anseriformes). To examine the relative importance of biotic and abiotic factors on waterfowl population densities, species richness and community composition, we surveyed 30 shallow lakes and evaluated the relationships among fish communities, lake characteristics and waterfowl in both breeding and moulting habitat. Shallow lakes were either fishless (n = 15), contained only small‐bodied fishes (n = 10) or contained large‐bodied, mostly predatory, fish in addition to small‐bodied fish (n = 5). 2. Environmental factors, including water colour, submerged aquatic vegetation, lake area and potassium, explained 24.3% of the variation in breeding waterfowl communities. Fish assemblage contributed independently to a small but significant proportion (13.4%) of the variation, while 13.8% of the explained variation was shared between environmental factors and fish assemblage. In total, 51.5% of the variation in breeding waterfowl communities was explained. 3. Overall, 55.5% of the total variation in moulting waterfowl communities was explained. Environment alone [especially total phosphorus, lake area, maximum depth and dissolved organic carbon (DOC)] and variation shared by fish and environment similarly accounted for most of the explained variation in moulting waterfowl communities (21.7% and 25.7% respectively), while fish assemblage was only one‐third as important (8.1%). 4. Both breeding and moulting waterfowl densities increased with lake productivity, even in eutrophic and hypereutrophic lakes. Breeding waterfowl density was also twice as great in fishless lakes than in lakes with fish, after accounting for lake area. 5. Certain waterfowl taxa were linked to fishless lakes, especially in the moulting season. Canvasback and moulting ring‐necked ducks were linked to small‐bodied fish lakes, whereas moulting common goldeneye were indicators of large‐bodied fish lakes. Knowledge of fish presence and species composition can therefore help guide conservation and management of waterfowl habitat in western Canada. Our results suggest that management efforts to maintain the most productive waterfowl habitat in the BTZ should focus on smaller, shallow, fishless lakes, particularly given that larger fish‐bearing systems have greater regulatory protection.  相似文献   

13.
Aim To investigate the potential impacts of climate change on stream fish assemblages in terms of species and biological trait diversity, composition and similarity. Location One‐thousand one‐hundred and ten stream sections in France. Methods We predicted the future potential distribution of 35 common stream fish species facing changes in temperature and precipitation regime. Seven different species distribution models were applied and a consensus forecast was produced to limit uncertainty between single‐models. The potential impacts of climate change on fish assemblages were assessed using both species and biological trait approaches. We then addressed the spatial distribution of potential impacts along the upstream–downstream gradient. Results Overall, climate change was predicted to result in an increase in species and trait diversity. Species and trait composition of the fish assemblages were also projected to be highly modified. Changes in assemblages’ diversity and composition differed strongly along the upstream–downstream gradient, with upstream and midstream assemblages more modified than downstream assemblages. We also predicted a global increase in species and trait similarity between pairwise assemblages indicating a future species and trait homogenization of fish assemblages. Nevertheless, we found that upstream assemblages would differentiate, whereas midstream and downstream assemblages would homogenize. Our results suggested that colonization could be the main driver of the predicted homogenization, while local extinctions could result in assemblage differentiation. Main conclusions This study demonstrated that climate change could lead to contrasted impacts on fish assemblage structure and diversity depending on the position along the upstream–downstream gradient. These results could have important implications in terms of ecosystem monitoring as they could be useful in establishing areas that would need conservation prioritization.  相似文献   

14.
15.
16.
Aim To assess the potential impacts of future climate change on spatio‐temporal patterns of freshwater fish beta diversity. Location Adour–Garonne River Basin (France). Methods We first applied an ensemble modelling approach to project annually the future distribution of 18 fish species for the 2010–2100 period on 50 sites. We then explored the spatial and temporal patterns of beta diversity by distinguishing between its two additive components, namely species turnover and nestedness. Results Taxonomic homogenization of fish assemblages was projected to increase linearly over the 21st century, especially in the downstream parts of the river gradient. This homogenization process was almost entirely caused by a decrease in spatial species turnover. When considering the temporal dimension of beta diversity, our results reveal an overall pattern of decreasing beta diversity along the upstream–downstream river gradient. In contrast, when considering the turnover and nestedness components of temporal beta diversity we found significant U‐shaped and hump‐shaped relationships, respectively. Main conclusions Future climate change is projected to modify the taxonomic composition of freshwater fish assemblages by increasing their overall similarity over the Adour–Garonne River Basin. Our findings suggest that the distinction between the nestedness and turnover components of beta diversity is not only crucial for understanding the processes shaping spatial beta‐diversity patterns but also for identifying localities where the rates of species replacement are projected to be greatest. Specifically we recommend that future conservation studies should not only consider the spatial component of beta diversity but also its dynamic caused by climate warming.  相似文献   

17.
18.
Spatial isolation and fish communities in drainage lakes   总被引:6,自引:0,他引:6  
Fifty-two drainage lakes, located in south-central Ontario, Canada, were examined to study the association of isolation- and environment-related factors with fish community composition. Eight quantitative measures of lake isolation were examined, each of which incorporated potential ecological "challenges" that a fish encounters when moving between lakes. A Procrustean approach was employed to assess the degree of concordance between fish assemblage structure, measures of lake isolation and environmental conditions (i.e., lake morphology and water chemistry). Our results revealed a high concordance between patterns in fish community composition and lake isolation and lake morphology at the watershed scale, suggesting that insular and habitat-related factors influence the structure of fish communities. At the scale of the individual lake, this relationship varied greatly, ranging from a strong match of community composition with both spatial and abiotic conditions to communities exhibiting weak association with these conditions. Furthermore, we showed that alternative measures of lake isolation provide additional insight into potential factors shaping patterns in fish community composition; information not provided using straight-line distances between lakes. Finally, the statistical methodology outlined in this paper provides a robust technique for assessing both the overall association between multivariate data matrices (i.e., landscape or regional scale), as well as facilitating the examination of smaller-scale relationships of individual observations (i.e., local scale).  相似文献   

19.
Research on ecosystem stability has had a strong focus on local systems. However, environmental change often occurs slowly at broad spatial scales, which requires regional‐level assessments of long‐term stability. In this study, we assess the stability of macroinvertebrate communities across 105 lakes in the Swedish “lakescape.” Using a hierarchical mixed‐model approach, we first evaluate the environmental pressures affecting invertebrate communities in two ecoregions (north, south) using a 23 year time series (1995–2017) and then examine how a set of environmental and physical variables affect the stability of these communities. Results show that lake latitude, size, total phosphorus and alkalinity affect community composition in northern and southern lakes. We find that lake stability is affected by species richness and lake size in both ecoregions and alkalinity and total phosphorus in northern lakes. There is large heterogeneity in the patterns of community stability of individual lakes, but relationships between that stability and environmental drivers begin to emerge when the lakescape, composed of many discrete lakes, is the focal unit of study. The results of this study highlight that broad‐scale comparisons in combination with long time series are essential to understand the effects of environmental change on the stability of lake communities in space and time.  相似文献   

20.
1. Decades of introductions of exotic sportfish to mountain lakes around the world have impoverished them biologically, and this may be exacerbated by global warming. We assessed the current status of invasive salmonids and native zooplankton communities in 34 naturally fishless lakes along an elevational gradient, which served as an environmental proxy for the expected effects of climate change. 2. Our main goal was to explore how climate‐related variables influence the effects of stocked salmonids on the total biomass, species richness and taxonomic composition of zooplankton. We predicted that warmer conditions would dampen the negative predatory effects of exotic brook trout (Salvelinus fontinalis) on zooplankton communities because more temperate lakes contain a greater diversity of potentially tolerant species. 3. Instead, we discovered that the persistence of stocked brook trout in the warmer lakes significantly amplified total zooplankton biomass and species richness. In colder and deeper lakes, zooplankton were relatively unaffected by S. fontinalis, which however persisted better in alpine lakes than at lower elevations after stocking practices were halted over two decades ago. Warmer lake conditions and higher concentrations of dissolved organic carbon (DOC) were significant primary drivers of zooplankton species turnover, both favouring greater species diversity. 4. Our findings of an ecological surprise involving potential synergistic positive effects of climate warming and exotic trout on native zooplankton communities presents a conundrum for managers of certain national mountain parks. Present mandates to eradicate non‐native trout and return the mountain lakes to their naturally fishless state may conflict with efforts to conserve biodiversity under a rapidly changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号