首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   

2.
Soil surface CO2 flux was measured in hollow and hummock microhabitats in a peatland in north central Minnesota from June to October in 1991. We used a closed infrared gas exchange system to measure soil CO2 flux. The rates of CO2 evolution from hummocks (9.8 ± 3.5 g m−2 d−1, [mean ± SE]) were consistently higher than those from hollows (5.4 ± 2.9 g m−2 d−1) (the hummock values included the contribution of moss dark respiration, which may account for 10–20% of the total measured flux). The soil CO2 flux was strongly temperature-dependent (Q10 ≈ 3.7) and appeared to be linearly related to changes in water table depth. An empirical multiplicative model, using peat temperature and water table depth as independent variables, explained about 81% of the variance in the CO2 flux data. Using the empirical model with measurements of peat temperature and estimates of hollow/hummock microtopographic distribution (relative to water table elevation), daily rates of “site-averaged” CO2 evolution were calculated. For the six-month period (May–October), the total soil CO2 released from this ecosystem was estimated to be about 1340 g CO2 m−2. Published as Paper No. 9950, Journal Series, Nebraska Agricultural Research Division, University of Nebraska, Lincoln, NE, USA.  相似文献   

3.
The lowland peatlands of south‐east Asia represent an immense reservoir of fossil carbon and are reportedly responsible for 30% of the global carbon dioxide (CO2) emissions from Land Use, Land Use Change and Forestry. This paper provides a review and meta‐analysis of available literature on greenhouse gas fluxes from tropical peat soils in south‐east Asia. As in other parts of the world, water level is the main control on greenhouse gas fluxes from south‐east Asian peat soils. Based on subsidence data we calculate emissions of at least 900 g CO2 m?2 a?1 (~250 g C m?2 a?1) for each 10 cm of additional drainage depth. This is a conservative estimate as the role of oxidation in subsidence and the increased bulk density of the uppermost drained peat layers are yet insufficiently quantified. The majority of published CO2 flux measurements from south‐east Asian peat soils concerns undifferentiated respiration at floor level, providing inadequate insight on the peat carbon balance. In contrast to previous assumptions, regular peat oxidation after drainage might contribute more to the regional long‐term annual CO2 emissions than peat fires. Methane fluxes are negligible at low water levels and amount to up to 3 mg CH4 m?2 h?1 at high water levels, which is low compared with emissions from boreal and temperate peatlands. The latter emissions may be exceeded by fluxes from rice paddies on tropical peat soil, however. N2O fluxes are erratic with extremely high values upon application of fertilizer to wet peat soils. Current data on CO2 and CH4 fluxes indicate that peatland rewetting in south‐east Asia will lead to substantial reductions of net greenhouse gas emissions. There is, however, an urgent need for further quantitative research on carbon exchange to support the development of consistent policies for climate change mitigation.  相似文献   

4.
Controls on the Carbon Balance of Tropical Peatlands   总被引:4,自引:0,他引:4  
The carbon balance of tropical peatlands was investigated using measurements of gaseous fluxes of carbon dioxide (CO2) and methane (CH4) at several land-use types, including nondrained forest (NDF), drained forest (DF), drained regenerating forest (DRF) after clear cutting and agricultural land (AL) in Central Kalimantan, Indonesia. Soil greenhouse gas fluxes depended on land-use, water level (WL), microtopography, temperature and vegetation physiology, among which WL was the strongest driver. All sites were CH4 sources on an annual basis and the emissions were higher in sites providing fresh litter deposition and water logged conditions. Soil CO2 flux increased exponentially with soil temperature (T s) even within an amplitude of 4–5°C. In the NDF soil CO2 flux sharply decreased when WLs rose above −0.2 and 0.1 m for hollows and hummocks, respectively. The sharp decrease suggests that the contribution of surface soil respiration (RS) to total soil CO2 flux is large. In the DF soil CO2 flux increased as WL decreased below −0.7 m probably because the fast aerobic decomposition continued in lower peat. Such an increase in CO2 flux at low WLs was also found at the stand level of the DF. Soil CO2 flux showed diurnal variation with a peak in the daytime, which would be caused by the circadian rhythm of root respiration. Among the land-use types, annual soil CO2 flux was the largest in the DRF and the smallest in the AL. Overall, the global warming potential (GWP) of CO2 emissions in these land-use types was much larger than that of CH4 fluxes.  相似文献   

5.
Summary Carbon dioxide efflux and soil microenvironmental factors were measured diurnally in Carex aquatilus-and Eriophorum angustifolium-dominated riparian tundra communities to determine the relative importance of soil environmental factors controlling ecosystem carbon dioxide exchange with the atmosphere. Measurements were made weekly between 18 June and 24 July 1990. Diurnal patterns in carbon dioxide efflux were best explained by changes in soil temperature, while seasonal changes in efflux were correlated with changes in depth to water table, depth to frozen soil and soil moisture. Carbon dioxide efflux rates were lowest early in the growing season when high water tables and low soil temperatures limited microbial and root activity. Individual rainfall events that raised the water table were found to strongly reduce carbon dioxide efflux. As the growing season progressed, rainfall was low and depth to water table and soil temperatures increased. In response, carbon dioxide efflux increased strongly, attaining rates late in the season of approximately 10 g CO2 m–2 day–1. These rates are as high as maxima recorded for other arctic sites. A mathematical model is developed which demonstrates that soil temperature and depth to water table may be used as efficient predictors of ecosystem CO2 efflux in this habitat. In parallel with the field measurements of CO2 efflux, microbial respiration was studied in the laboratory as a function of temperature and water content. Estimates of microbial respiration per square meter under field conditions were made by adjusting for potential respiring soil volume as water table changed and using measured soil temperatures. The results indicate that the effect of these factors on microbial respiration may explain a large part of the diurnal and seasonal variation observed in CO2 efflux. As in coastal tundra sites, environmental changes that alter water table depth in riparian tundra communities will have large effects on ecosystem CO2 efflux and carbon balance.  相似文献   

6.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

7.
Carbon exchange of grazed pasture on a drained peat soil   总被引:1,自引:0,他引:1  
Land‐use changes have contributed to increased atmospheric CO2 concentrations. Conversion from natural peatlands to agricultural land has led to widespread subsidence of the peat surface caused by soil compaction and mineralization. To study the net ecosystem exchange of carbon (C) and the contribution of respiration to peat subsidence, eddy covariance measurements were made over pasture on a well‐developed, drained peat soil from 22 May 2002 to 21 May 2003. The depth to the water table fluctuated between 0.02 m in winter 2002 to 0.75 m during late summer and early autumn 2003. Peat soil moisture content varied between 0.6 and 0.7 m3 m?3 until the water table dropped below 0.5 m, when moisture content reached 0.38 m3 m?3. Neither depth to water table nor soil moisture was found to have an effect on the rate of night‐time respiration (ranging from 0.4–8.0 μmol CO2 m?2 s?1 in winter and summer, respectively). Most of the variance in night‐time respiration was explained by changes in the 0.1 m soil temperature (r2=0.93). The highest values for daytime net ecosystem exchange were measured in September 2002, with a maximum of ?17.2 μmol CO2 m?2 s?1. Grazing events and soil moisture deficiencies during a short period in summer reduced net CO2 exchange. To establish an annual C balance for this ecosystem, non‐linear regression was used to model missing data. Annually integrated (CO2) C exchange for this peat–pasture ecosystem was 45±500 kg C ha?1 yr?1. After including other C exchanges (methane emissions from cows and production of milk), the net annual C loss was 1061±500 kg C ha?1 yr?1.  相似文献   

8.
In order to study the net ecosystem CO2 exchange (NEE) variation and its response to environmental factors, CO2 flux and related environmental factors were monitored from May until September. The diurnal NEE variations in this region showed a U-shaped distribution. The average daily CO2 absorption in July was the largest. The study area is a carbon sink during the growing season. At the soil depth of 40 and 80 cm, due to the influence of underground water, the soil water content had a significantly negative correlation with NEE. The increase in relative air humidity can facilitate stomata opening, which also improves CO2 absorption. Additionally, the increase in air temperature, soil temperature and photosynthetically active radiation (PAR) all promote plant photosynthesis, which leads to a negative correlation with NEE.  相似文献   

9.
The effects of rainfall events on soil CO2 fluxes were examined in a cool temperate Quercus/Betula forest in Japan. The soil CO2 fluxes were measured using an open-flow gas exchange system with an infrared gas analyzer in the snow-free season from August 1999 to November 2000. Soil CO2 flux showed no significant diurnal trend on days without rain. In contrast, rainfall events caused a significant increase in soil CO2 flux. To determine the effect of rainfall events and to evaluate more precisely the daily and annual soil carbon flux, we constructed a multiple polynomial regression model that included two variables, soil temperature and soil water content, using the soil CO2 flux data recorded on sunny days. Daily soil carbon fluxes on sunny days calculated by the model were almost the same as those determined by the field measurements. On the contrary, the fluxes measured on rainy days were significantly higher than those calculated daily from the soil carbon fluxes by the model. Annual soil carbon fluxes in 1999 and 2000 were estimated using models that both do and do not take rainfall effects into consideration. The result indicates that post-rainfall increases in soil CO2 flux represent approximately 16–21% of the annual soil carbon flux in this cool temperate deciduous forest.  相似文献   

10.
Ecosystem respiration (ER) is an important but poorly understood part of the carbon (C) budget of peatlands and is controlled primarily by the thermal and hydrologic regimes. To establish the relative importance of these two controls for a large ombrotrophic bog near Ottawa, Canada, we analyzed ER from measurements of nighttime net ecosystem exchange of carbon dioxide (CO2) determined by eddy covariance technique. Measurements were made from May to October over five years, 1998 to 2002. Ecosystem respiration ranged from less than 1 μmol CO2 m−2 s−1 in spring (May) and fall (late October) to 2–4 μmol CO2 m−2 s−1 during mid-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0.62). Q10 between 5° to 15°C varied from 2.2 to 4.2 depending upon the choice of depth where temperature was measured and location within a hummock or hollow. There was only a weak relationship between ER and water-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in production due to drying from below a depth of 30 cm. We postulate that the weak correlation between ER and water table position in this peatland is primarily a function of the bog being relatively dry, with water table varying between 30 and 75 cm below the hummock tops. The dryness gives rise to a complex ER response to water table involving i) compensations between production of CO2 in the upper and lower peat profile as the water table falls and ii) the importance of autotrophic respiration, which is relatively independent of water-table position.  相似文献   

11.
西南喀斯特地区轮作旱地土壤CO2通量   总被引:1,自引:0,他引:1  
房彬  李心清  程建中  王兵  程红光  张立科  杨放 《生态学报》2013,33(17):5299-5307
中国已承诺大幅降低单位GDP碳排放,农业正面临固碳减排的重任.西南喀斯特地区环境独特,旱地面积占据优势比例,土壤碳循环认识亟待加强.以贵州省开阳县玉米-油菜轮作旱地为研究对象,采用密闭箱-气相色谱法对整个轮作期土壤CO2释放通量进行了观测研究,结果表明:(1)整个轮作期旱地均表现为CO2的释放源.其中油菜生长季土壤CO2通量为(178.8±104.8)mg CO2·m-2·h-1,玉米生长季为(403.0±178.8) mg CO2·m-2·h-1,全年平均通量为(271.1±176.4) mg CO2·m-2·h-1,高于纬度较高地区的农田以及同纬度的次生林和松林;(2)CO2通量日变化同温度呈现显著正相关关系,季节变化与温度呈现显著指数正相关关系,并受土壤湿度的影响,基于大气温度计算得出的Q10为2.02,高于同纬度松林以及低纬度的常绿阔叶林;(3)CO2通量与土壤pH存在显著线性正相关关系,显示出土壤pH是研究区旱地土壤呼吸影响因子之一.  相似文献   

12.
Bog ecosystems are sensitive to anthropogenic disturbance, including drainage and air pollution. Carbon (C) balance measurements to determine the effect of disturbance on bog functioning are laborious; therefore reliable proxies for C fluxes that could facilitate upscaling from single studies to a larger scale would be valuable. We measured peat CO2 emissions (R s), CH4 efflux and vegetation characteristics in four bog areas that formed a gradient from pristine to severely disturbed peatlands, affected by drainage, peat mining, alkaline air pollution and underground oil-shale mining. We expected that sites experiencing higher human impact (i.e., the vegetation was more distinct from that of a natural bog) would have higher R s and lower CH4 emissions, but differences in peat C emissions between the most disturbed and pristine sites were not significant. Growing period median R s ranged from 0.5 to 2.2 g C m?2 day?1 for our plots; methane emissions, measured from July to December were an order of magnitude lower, ranging from ?5.9 to 126.7 mg C m?2 day?1. R s and CH4 emissions were primarily determined by water table depth, as was tree stand productivity. Therefore, stand structural parameters could potentially be good indicators of soil C emissions from poorly drained forested bogs.  相似文献   

13.
Long-term and direct measurements of CO2 and water vapour exchange are needed over forested ecosystems to determine their net annual fluxes of carbon dioxide and water. Such measurements are also needed to parameterize and test biogeochemical, ecological and hydrological assessment models. Responding to this need, eddy covariance measurements of CO2 and water vapour were made ever a deciduous forest growing near Oak Ridge, TN, between April 1993 and April 1994. Periodic measurements were made of leaf area index, stomatal resistance, soil moisture and pre-dawn leaf water potential to characterize the gas exchange capacity of the canopy. Four factors had a disproportionate influence on the seasonal variation of CO2 flux densities. These factors were photon flux densities (during the growing season), temperature (during the dormant season), leaf area index and the occurrence of drought The drought period occurred during the peak of the growing season and caused a significant decline in daily and hourly CO2 flux densities, relative to observations over the stand when soil moisture was plentiful. The annual net uptake of carbon was calculated by integrating flux measurements and filling missing and spurious data with the relations obtained between measured CO2 fluxes and environmental forcing variables. The net flux of carbon for the period between April 1993 and April 1994 was -525 g C m?2 y?1. This value represents a net flux of carbon from the atmosphere and into the forest. The net annual carbon exchange of this southern temperate broadleaved forest exceeded values measured over a northern temperate forest (which experiences a shorter growing season and has less leaf area) by 200 g C m?2 y?1 (cf. Wofsy et al 1993). The seasonal variation of canopy evaporation (latent heat flux) was controlled mostly by changes in leaf area and net radiation. A strong depression in evaporation rates was not observed during the drought Over a broadleaved forest large vapour pressure deficits promote evaporation and trees in a mixed stand are able to tap a variety of deep and shallow water sources.  相似文献   

14.
Carbon dioxide and methane exchange of a north-east Siberian tussock tundra   总被引:1,自引:0,他引:1  
Carbon dioxide, energy flux measurements and methane chamber measurements were carried out in an arctic wet tussock grassland located on a flood plane of the Kolyma river in NE Siberia over a summer period of 155 days in 2002 and early 2003. Respiration was also measured in April 2004. The study region is characterized by late thaw of the top soil (mid of June) and periodic spring floods. A stagnant water table below the grass canopy is fed by thawing of the active layer of permafrost and by flood water. The climate is continental with average daily temperature in the warmest months of 13°C (maximum temperature at midday: 28°C by the end of July), dry air (maximum vapour pressure deficit at midday: 28 hPa) and low rainfall of 50 mm during summer (July–September). Summer evaporation (July–September: 103 mm) exceeded rainfall by a factor of 2. The daily average Bowen ratio (H/LE) was 0.62 during the growing season. Net ecosystem CO2 uptake reached 10 μmol m−2 s−1 and was related to photon flux density (PFD) and vapour pressure deficit (VPD). The cumulative annual net carbon flux from the atmosphere to the terrestrial surface was estimated to be about −38 g C m−2 yr−1 (negative flux depicts net carbon sink). Winter respiration was extrapolated using the Lloyd and Taylor function. The net carbon balance is composed of a high rate of assimilation in a short summer and a fairly large but uncertain respiration mainly during autumn and spring. Methane flux (about 12 g C m−2 measured over 60 days) was 25% of C uptake during the same period of time (end of July to end of September). Assuming that CH4 was emitted only in summer, and taking the greenhouse gas warming potential of CH4 vs. CO2 into account (factor 23), the study site was a greenhouse gas source (at least 200 g Cequivalent m−2 yr−1). Comparing different studies in wetlands and tundra ecosystems as related to latitude, we expect that global warming would rather increase than decrease the CO2-C sink.  相似文献   

15.
This study sought to investigate the hourly and daily timescale responses of soil CO2 fluxes to temperature in a limed agricultural soil. Observations from different incubation experiments were compared with the results of a model combining biotic (heterotrophic respiration) and abiotic (carbonate weathering) components. Several samples were pre-incubated for 8–9 days at three temperatures (5, 15 and 25 °C) and then submitted to short-term temperature (STT) cycles (where the temperature was increased from 5 to 35 °C in 10 °C stages, with each stage being 3 h long). During the temperature cycles (hourly timescale), the soil CO2 fluxes increased significantly with temperature under all pre-incubation temperature (PIT) treatments. A hysteresis effect and negative fluxes during cooling phases were also systematically observed. At a given hourly timescale temperature, there was a negative relationship of the CO2 fluxes with the PIT. Using the combined model allowed the experimental results to be clearly described, including the negative fluxes and the hysteresis effect, showing the potentially large contribution of abiotic fluxes to total fluxes in limed soils, after STT changes. The fairly good agreement between the measured and simulated flux results also suggested that the biotic flux temperature sensitivity was probably unaffected by timescale (hourly or daily) or PIT. The negative relationship of the CO2 fluxes with the PIT probably derived from very labile soil carbon depletion, as shown in the simulations. This was not, however, confirmed by soil carbon measurements, which leaves open the possibility of adaptation within the microbial community.  相似文献   

16.
Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at ?5, ?0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at ?0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC?1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.  相似文献   

17.
Effect of water table on greenhouse gas emissions from peatland mesocosms   总被引:2,自引:0,他引:2  
Peatland landscapes typically exhibit large variations in greenhouse gas (GHG) emissions due to microtopographic and vegetation heterogeneity. As many peatland budgets are extrapolated from small-scale chamber measurements it is important to both quantify and understand the processes underlying this spatial variability. Here we carried out a mesocosm study which allowed a comparison to be made between different microtopographic features and vegetation communities, in response to conditions of both static and changing water table. Three mesocosm types (hummocks?+?Juncus effusus, hummocks?+?Eriophorum vaginatum, and hollows dominated by moss) were subjected to two water table treatments (0–5 cm and 30–35 cm depth). Measurements were made of soil-atmosphere GHG exchange, GHG concentration within the peat profile and soil water solute concentrations. After 14 weeks the high water table group was drained and the low water table group flooded. Measurement intensity was then increased to examine the immediate response to change in water table position. Mean CO2, CH4 and N2O exchange across all chambers was 39.8 μg m?2 s?1, 54.7 μg m?2 h?1 and ?2.9 μg m?2 h?1, respectively. Hence the GHG budget was dominated in this case by CO2 exchange. CO2 and N2O emissions were highest in the low water table treatment group; CH4 emissions were highest in the saturated mesocosms. We observed a strong interaction between mesocosm type and water table for CH4 emissions. In contrast to many previous studies, we found that the presence of aerenchyma-containing vegetation reduced CH4 emissions. A significant pulse in both CH4 and N2O emissions occurred within 1–2 days of switching the water table treatments. This pulsing could potentially lead to significant underestimation of landscape annual GHG budgets when widely spaced chamber measurements are upscaled.  相似文献   

18.
Peatlands contain large amount of carbon stock that is vulnerable to release into the atmosphere. Mostly because of human impact, the peatlands at Zoige Wetlands face severe degradation, and the groundwater table is now lower than before, which has increased the population of the plateau zokor, a burrowing rodent. However, the impact of these changes on ecosystem carbon flows has not been studied. To investigate how the plateau zokor and the groundwater level alter the ecosystem respiration of the Zoige peatlands, we sampled the CO2 flux of hummocks shaped by the zokors and compared it with the CO2 flux of undisturbed sites with different groundwater table levels. The soil organic carbon (SOC), soil water content (SWC) and soil temperature at 5 cm (T5) were measured. SOC showed no significant difference among the four sampling sites and did not correlate with the CO2 flux, while SWC was found to partly determine the CO2 flux. A linear equation could adequately describe the relationship between the natural logarithm of the ecosystem respiration and the soil temperature. It is demonstrated that descending groundwater table might accelerate ecosystem respiration and the CO2 flux from hummocks was higher than the CO2 flux from the control site in the non-growing season. With rising temperature, the CO2 flux from the control site accelerated faster than that from the hummocks. Our results show that ecosystem respiration was significantly lower from hummocks than at the control site in the growing season. The results on the impact of zokors on greenhouse gas emissions presented in this paper provide a useful reference to help properly manage not only this, but other litter-burrowing mammals at peatland sites.  相似文献   

19.
Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May–September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181–215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m?2 s?1 (4.6 mg CH4 m?2 h?1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144–269 (late May–late September)], the total CH4 emission was 3.2 g CH4 m?2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m?2 or 217 g C m?2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years.  相似文献   

20.
Climate change will directly affect carbon and nitrogen mineralization through changes in temperature and soil moisture, but it may also indirectly affect mineralization rates through changes in soil quality. We used an experimental mesocosm system to examine the effects of 6‐year manipulations of infrared loading (warming) and water‐table level on the potential anaerobic nitrogen and carbon (as carbon dioxide (CO2) and methane (CH4) production) mineralization potentials of bog and fen peat over 11 weeks under uniform anaerobic conditions. To investigate the response of the dominant methanogenic pathways, we also analyzed the stable isotope composition of CH4 produced in the samples. Bog peat from the highest water‐table treatment produced more CO2 than bog peat from drier mesocosms. Fen peat from the highest water‐table treatment produced the most CH4. Cumulative nitrogen mineralization was lowest in bog peat from the warmest treatment and lowest in the fen peat from the highest water‐table treatment. As all samples were incubated under constant conditions, observed differences in mineralization patterns reflect changes in soil quality in response to climate treatments. The largest treatment effects on carbon mineralization as CO2 occurred early in the incubations and were ameliorated over time, suggesting that the climate treatments changed the size and/or quality of a small labile carbon pool. CH4 from the fen peat appeared to be predominately from the acetoclastic pathway, while in the bog peat a strong CH4 oxidation signal was present despite the anaerobic conditions of our incubations. There was no evidence that changes in soil quality have lead to differences in the dominant methanogenic pathways in these systems. Overall, our results suggest that even relatively short‐term changes in climate can alter the quality of peat in bogs and fens, which could alter the response of peatland carbon and nitrogen mineralization to future climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号