首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The concept of a circular economy (CE) is gaining increasing attention from policy makers, industry, and academia. There is a rapidly evolving debate on definitions, limitations, the contribution to a wider sustainability agenda, and a need for indicators to assess the effectiveness of circular economy measures at larger scales. Herein, we present a framework for a comprehensive and economy‐wide biophysical assessment of a CE, utilizing and systematically linking official statistics on resource extraction and use and waste flows in a mass‐balanced approach. This framework builds on the widely applied framework of economy‐wide material flow accounting and expands it by integrating waste flows, recycling, and downcycled materials. We propose a comprehensive set of indicators that measure the scale and circularity of total material and waste flows and their socioeconomic and ecological loop closing. We applied this framework in the context of monitoring efforts for a CE in the European Union (EU28) for the year 2014. We found that 7.4 gigatons (Gt) of materials were processed in the EU and only 0.71 Gt of them were secondary materials. The derived input socioeconomic cycling rate of materials was therefore 9.6%. Further, of the 4.8 Gt of interim output flows, 14.8% were recycled or downcycled. Based on these findings and our first efforts in assessing sensitivity of the framework, a number of improvements are deemed necessary: improved reporting of wastes, explicit modeling of societal in‐use stocks, introduction of criteria for ecological cycling, and disaggregated mass‐based indicators to evaluate environmental impacts of different materials and circularity initiatives. This article met the requirements for a gold – gold JIE data openness badge described at http://jie.click/badges .  相似文献   

2.
A closed‐loop supply chain (CLSC) is considered not only an important solution for ensuring sustainable exploitation of materials, but also a promising strategy for securing long‐term availability of materials. The latter is especially highlighted in the materials criticality discourse. Critical raw materials (CRMs), being exposed to supply disruptions, create an uncertain operational environment for many industries, particularly for green energy technologies that employ multiple CRMs. However, recycling rates of CRMs are very low and engagement of companies in CLSC for CRM is limited. This study examines factors influencing CLSC for CRM development in photovoltaic panels and wind turbine technologies. The aim is to analyze how the factors manifest themselves in different companies along the supply chain and to identify enabling and bottleneck conditions for implementation of CLSC for CRM. The novelty of the study is twofold: the focus on material rather than product flows, and examination of factors from a multiactor perspective. The evidence obtained suggests that the manufacturing companies and reverse supply‐chain operators engaged in the study take different perspectives (product vs. material) regarding development of CLSC for CRM and thus emphasize different factors. The findings underline the need for interactions between supply‐chain actors, a sound competitive environment for recycling processes, and investment in technologies and infrastructure development if CLSC for CRM is to be developed. The paper provides implications for practitioners and policy makers for implementation of CLSC for CRM, and suggests prospects for further research.  相似文献   

3.
The food industry in Australia (agriculture and manufacturing) plays a fundamental role in contributing to socioeconomic sectors nationally. However, alongside the benefits, the industry also produces environmental burdens associated with the production of food. Sectorally, agriculture is the largest consumer of water. Additionally, land degradation, greenhouse gas emissions, energy consumption, and waste generation are considered the main environmental impacts caused by the industry. The research project aims to evaluate the eco‐efficiency performance of various subsectors in the Australian agri‐food systems through the use of input‐output–oriented approaches of data envelopment analysis and material flow analysis. This helps in establishing environmental and economic indicators for the industry. The results have shown inefficiencies during the life cycle of food production in Australia. Following the principles of industrial ecology, the study recommends the implementation of sustainable processes to increase efficiency, diminish undesirable outputs, and decrease the use of nonrenewable inputs within the production cycle. Broadly, the research outcomes are useful to inform decision makers about the advantages of moving from a traditional linear system to a circular production system, where a sustainable and efficient circular economy could be created in the Australian food industry.  相似文献   

4.
Future phosphorus (P) scarcity and eutrophication risks demonstrate the need for systems‐wide P assessments. Despite the projected drastic increase in world‐wide fish production, P studies have yet to include the aquaculture and fisheries sectors, thus eliminating the possibility of assessing their relative importance and identifying opportunities for recycling. Using Norway as a case, this study presents the results of a current‐status integrated fisheries, aquaculture, and agriculture P flow analysis and identifies current sectoral linkages as well as potential cross‐sectoral synergies where P use can be optimized. A scenario was developed to shed light on how the projected 2050 fivefold Norwegian aquaculture growth will likely affect P demand and secondary P resources. The results indicate that, contrary to most other countries where agriculture dominates, in Norway, aquaculture and agriculture drive P consumption and losses at similar levels and secondary P recycling, both intra‐ and cross‐sectorally, is far from optimized. The scenario results suggest that the projected aquaculture growth will make the Norwegian aquaculture sector approximately 4 times as P intensive as compared to agriculture, in terms of both imported P and losses. This will create not only future environmental challenges, but also opportunities for cross‐sectoral P recycling that could help alleviate the mineral P demands of agriculture. Near‐term policy measures should focus on utilizing domestic fish scrap for animal husbandry and/or fish feed production. Long‐term efforts should focus on improving technology and environmental systems analysis methods to enable P recovery from aquaculture production and manure distribution in animal husbandry.  相似文献   

5.
The article presents a method for the calculation of selected economy‐wide material flow indicators (namely, direct material input [DMI] and raw material input [RMI]) for economic sectors. Whereas sectoral DMI was calculated using direct data from statistics, we applied a concept of total flows and a hybrid input‐output life cycle assessment method to calculate sectoral RMI. We calculated the indicators for the Czech Republic for 2000–2011. We argue that DMI of economic sectors can be used for policies aiming at decreasing the direct input of extracted raw materials, and imported raw materials and products, whereas sectoral RMI can be better used for justifying support for or weakening the role of individual sectors within the economy. High‐input material flows are associated in the Czech Republic with the extractive industries (agriculture and forestry, the mining of fossil fuels [FFs], other types of mining, and quarrying), with several manufacturing industries (manufacturing of beverages, basic metals, motor vehicles or electricity, and gas and steam supply) and with construction. Viable options for reducing inputs of agricultural biomass include changes in people's diet toward a lower amount of animal‐based food and a decrease in the wasting of food. For FFs, one should think of changing the structure of total primary energy supply toward cleaner gaseous and renewable energy sources, innovations in transportation systems, and improvements in overall energy efficiency. For metal ores, viable options include technological changes leading to smaller and lighter products, as well as consistent recycling and use of secondary metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号