首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food‐web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food‐web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080–2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large‐scale impacts of climate change on marine food‐web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems.  相似文献   

2.
Despite the increasing ubiquity of biological invasions worldwide, little is known about the scale-dependent effects of nonnative species on real-world ecological dynamics. Here, using an extensive time series dataset of riverine fish communities across different biogeographic regions of the world, we assessed the effects of nonnative species on the temporal variability and synchrony in abundance at different organizational levels (population, metapopulation, community and metacommunity) and spatial scales (stream reach and river basin). At the reach scale, we found that populations of nonnative species were more variable over time than native species, and that this effect scaled up to the community level – significantly destabilizing the dynamics of riverine fish communities. Nonnative species not only contributed to reduced community stability, but also increased variability of native populations. By contrast, we found no effect of nonnative species dominance on local interspecific synchrony among native species. At the basin scale, nonnative metapopulations were again more variable than the native ones. However, neither native metapopulations nor metacommunities showed differences in temporal variability or synchrony as nonnative species dominance increased basin-wide. This suggests a ‘dilution effect’ where the contribution to regional stability of local native populations from sites displaying low levels of invasion reduced the destabilizing effects of nonnative species. Overall, our results indicate that accounting for the destabilizing effect of nonnative species is critical to understanding native species persistence and community stability.  相似文献   

3.
Community‐level climate change indicators have been proposed to appraise the impact of global warming on community composition. However, non‐climate factors may also critically influence species distribution and biological community assembly. The aim of this paper was to study how fire–vegetation dynamics can modify our ability to predict the impact of climate change on bird communities, as described through a widely‐used climate change indicator: the community thermal index (CTI). Potential changes in bird species assemblage were predicted using the spatially‐explicit species assemblage modelling framework – SESAM – that applies successive filters to constrained predictions of richness and composition obtained by stacking species distribution models that hierarchically integrate climate change and wildfire–vegetation dynamics. We forecasted future values of CTI between current conditions and 2050, across a wide range of fire–vegetation and climate change scenarios. Fire–vegetation dynamics were simulated for Catalonia (Mediterranean basin) using a process‐based model that reproduces the spatial interaction between wildfire, vegetation dynamics and wildfire management under two IPCC climate scenarios. Net increases in CTI caused by the concomitant impact of climate warming and an increasingly severe wildfire regime were predicted. However, the overall increase in the CTI could be partially counterbalanced by forest expansion via land abandonment and efficient wildfire suppression policies. CTI is thus strongly dependent on complex interactions between climate change and fire–vegetation dynamics. The potential impacts on bird communities may be underestimated if an overestimation of richness is predicted but not constrained. Our findings highlight the need to explicitly incorporate these interactions when using indicators to interpret and forecast climate change impact in dynamic ecosystems. In fire‐prone systems, wildfire management and land‐use policies can potentially offset or heighten the effects of climate change on biological communities, offering an opportunity to address the impact of global climate change proactively.  相似文献   

4.
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait‐based approaches can provide better insight than species‐based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33‐year database of fish monitoring to compare the spatio‐temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.  相似文献   

5.
Climate change is expected to strongly affect freshwater fish communities. Combined with other anthropogenic drivers, the impacts may alter species spatio‐temporal distributions and contribute to population declines and local extinctions. To provide timely management and conservation of fishes, it is relevant to identify species that will be most impacted by climate change and those that will be resilient. Species traits are considered a promising source of information on characteristics that influence resilience to various environmental conditions and impacts. To this end, we collated life‐history traits and climatic niches of 443 European freshwater fish species and compared those identified as susceptible to climate change to those that are considered to be resilient. Significant differences were observed between the two groups in their distribution, life history, and climatic niche, with climate‐change‐susceptible species being distributed within the Mediterranean region, and being characterized by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller body and range size, and warmer thermal envelopes. Based on our results, we establish a list of species of highest priority for further research and monitoring regarding climate‐change susceptibility within Europe. The presented approach represents a promising tool to efficiently assess large groups of species regarding their susceptibility to climate change and other threats, and to identify research and management priorities.  相似文献   

6.
Habitat modification and biological invasions are key drivers of global environmental change. However, the extent and impact of exotic plant invasions in modified tropical landscapes remain poorly understood. We examined whether logging drives exotic plant invasions and whether their combined influences alter understory plant community composition in lowland rain forests in Borneo. We tested the relationship between understory communities and local‐ and landscape‐scale logging intensity, using leaf area index (LAI) and aboveground biomass (AGB) data from 192 plots across a logging‐intensity gradient from primary to repeatedly logged forests. Overall, we found relatively low levels of exotic plant invasions, despite an intensive logging history. Exotic species were more speciose, had greater cover, and more biomass in sites with more local‐scale canopy loss. Surprisingly, though, exotic species invasion was not related to either landscape‐scale canopy loss or road configuration. Moreover, logging and invasion did not seem to be acting synergistically on native plant composition, except that seedlings of the canopy‐dominant Dipterocarpaceae family were less abundant in areas with higher exotic plant biomass. Current low levels of invasion, and limited association with native understory community change, suggest there is a window of opportunity to manage invasive impacts. We caution about potential lag effects and the possibly severe negative impacts of exotic plant invasions on the long‐term quality of tropical forest, particularly where agricultural plantations function as permanent seed sources for recurrent dispersal along logging roads. We therefore urge prioritization of strategic management plans to counter the growing threat of exotic plant invasions in modified tropical landscapes.  相似文献   

7.
The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate‐induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread‐rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters.  相似文献   

8.
Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near‐future ocean warming and acidification on the growth, health and seafood quality of a recreationally and commercially important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near‐future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro‐ and micronutrients, moisture, ash and total N). Yellowfin bream appear to be highly resilient to predicted near‐future ocean climate change, which might be facilitated by their wide spatio‐temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near‐future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats and imply their sustainable and viable fisheries into the future. We contend that widely distributed species that span large geographic areas and habitats can be “climate winners” by being resilient to the negative direct impacts of near‐future oceanic and estuarine climate change.  相似文献   

9.
10.
In Mediterranean regions, biological invasions pose a major threat to the conservation of native species and the integrity of ecosystems. In addition, changes in land‐cover are a widespread phenomenon in Mediterranean regions, where an increase in urban areas and major changes from agricultural abandonment to shrub encroachment and afforestation are occurring. However, the link between biological invasions and changes in land‐cover has scarcely been analyzed. We conducted a regional survey of the distribution of the two alien prickly‐pear cacti Opuntia maxima and O. stricta in Cap de Creus (Catalonia, Spain) and related patterns of invasion to spatially explicit data on land‐cover/change from 1973 to 1993 to test the hypotheses that the two Opuntia species invade areas that have experienced large land‐cover transformations. We found that Opuntia invasion is particularly high in shrublands and woodlands located near urban areas. O. maxima are over‐represented in the shrublands and O. stricta in the woodlands that were former crops. Crop coverage has dropped by 71% in this 20‐year period. This study highlights the role of past land‐cover in understanding the present distribution of plant invasions.  相似文献   

11.
Abstract. The Mediterranean Basin harbours paleo‐endemic species with a highly restricted and fragmented distribution. Many of them might also be of the remnant type, for which the regional dynamics depends on the persistence of extant populations. Therefore, a key issue for the long‐term persistence of these species is to assess the variability and effects of ecological factors determining plant performance. We investigated the spatio‐temporal variability in plant traits and ecological factors of Ramonda myconi, a preglacial relict species with remnant dynamics, in 5 populations over 4–7 yr. Ecological factors contributing to fecundity showed a high degree of between‐year variability. Pre‐dispersal fruit predation had a minor influence on total reproductive output, and most of the variability was found among individuals within populations and years. Spatio‐temporal variability in growth and survival was rather low but significant, whereas recruitment showed important between‐population variability. Among‐year variability in fecundity and growth was related to climatic fluctuations on a regional scale, notably rainfall and temperature in a particular period, while the spatial variability in survival and recruitment was explained by within‐population (patch) habitat quality. Although R. myconi is able to withstand repeated periods of drought, water availability seems to be the most important factor affecting plant performance in all the study populations. These findings suggest that the long‐term persistence of species showing remnant population dynamics in habitats under the influence of Mediterranean climate might be threatened by increased aridity as a result of climate change.  相似文献   

12.
13.
The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate‐induced adjustment of communities on Grinnellian (habitat‐related) and Eltonian (function‐related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving‐window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine‐scale and short‐term adjustment of community composition to temperature changes. Moreover, significant temperature variations seem to be responsible for both the Grinnellian and Eltonian aspects of functional homogenization.  相似文献   

14.
Climatic variables such as temperature and precipitation play an important role in controlling local and regional scale differences in population dynamics and species distributions, and large-scale climatic events such as El Niño southern oscillation (ENSO) have been shown to affect population dynamics of key species in many ecosystems, particularly in kelp forests. Few studies have been able to evaluate the consequences of climate variables on the structure and dynamics of biological communities, in large part because the lack of data at appropriate spatial and temporal scales has made it difficult to adequately address local-scale responses of species and communities to such events over relevant time scales. Here, we combined an unprecedented dataset of kelp forest species' abundances from the Channel Islands, California with data for several local, regional, and global scale climatic variables to evaluate the temporal and spatial scale at which one can detect community-wide effects of climate variables, in particular ENSO events. We found large and significant local-scale differences in community structure, but these differences were not related to differences in climatic variables. Moreover, giant kelp abundance, which has been shown to be highly sensitive to water temperature and storm disturbance, was a poor predictor of community differences, and all communities tended to decline in abundance over the 20-year sampling period, suggesting a press perturbation to the system such as PDO cycles or sustained fishing pressure. Although ENSO events can have dramatic impacts on the abundance and distribution of giant kelp itself across the range of the species, such events appear to have little effect on local-scale kelp forest community structure or dynamics.  相似文献   

15.
Streams in mediterranean regions have highly seasonal discharge patterns, with predictable torrential floods and severe droughts. In contrast, discharge is less variable in temperate regions and intermittent flow conditions are uncommon. Hydroclimatic models predict that climate change would increase frequency and severity of floods and droughts across Europe, thus increasing the proportion of streams with mediterranean characteristics in actually temperate areas. Correspondingly, understanding actual ecological differences between mediterranean and temperate streams may help to anticipate large‐scale ecological impacts of climate change. Given that large‐scale factors determine local community composition, we hypothesized that climatic differences between mediterranean and temperate regions should affect the taxonomic and biological trait composition in streams. We assembled the abundance of stream macroinvertebrate genera of 265 sites each from the Mediterranean Basin and from temperate Europe and linked these abundances to published information on 61 categories of 11 biological traits reflecting the potential of resilience from and resistance to disturbances. Although regional taxonomic richness was higher in the mediterranean than in the temperate region, local taxonomic richness and diversity did not significantly differ between regions. Local trait richness and diversity were significantly higher in the mediterranean region. Both local taxonomic and trait‐community composition differed between regions, but the former varied much more than the latter, highlighting that climate change could produce large changes in the taxonomic but rather weak changes in the trait composition. The mediterranean region was characterized by macroinvertebrates with higher dispersion and colonization capabilities, suggesting that species loss in the temperate region, by extinction or northward emigration of taxa, would be compensated for by immigration of southern mediterranean taxa. Thus, climate change would likely have stronger implications for the local conservation of taxa than for the trait composition of stream macroinvertebrate communities.  相似文献   

16.
As global climate change and variability drive shifts in species’ distributions, ecological communities are being reorganized. One approach to understand community change in response to climate change has been to characterize communities by a collective thermal preference, or community temperature index (CTI), and then to compare changes in CTI with changes in temperature. However, important questions remain about whether and how responsive communities are to changes in their local thermal environments. We used CTI to analyze changes in 160 marine assemblages (fish and invertebrates) across the rapidly‐changing Northeast U.S. Continental Shelf Large Marine Ecosystem and calculated expected community change based on historical relationships between species presence and temperature from a separate training dataset. We then compared interannual and long‐term temperature changes with expected community responses and observed community responses over both temporal scales. For these marine communities, we found that community composition as well as composition changes through time could be explained by species associations with bottom temperature. Individual species had non‐linear responses to changes in temperature, and these nonlinearities scaled up to a nonlinear relationship between CTI and temperature. On average, CTI increased by 0.36°C (95% CI: 0.34–0.38°C) for every 1°C increase in bottom temperature, but the relationship between CTI and temperature also depended on community composition. In addition, communities responded more strongly to interannual variation than to long‐term trends in temperature. We recommend that future research into climate‐driven community change accounts for nonlinear responses and examines ecological responses across a range of temporal and geographical scales.  相似文献   

17.
18.
Across the globe, invasive alien species cause severe environmental changes, altering species composition and ecosystem functions. So far, mountain areas have mostly been spared from large‐scale invasions. However, climate change, land‐use abandonment, the development of tourism and the increasing ornamental trade will weaken the barriers to invasions in these systems. Understanding how alien species will react and how native communities will influence their success is thus of prime importance in a management perspective. Here, we used a spatially and temporally explicit simulation model to forecast invasion risks in a protected mountain area in the French Alps under future conditions. We combined scenarios of climate change, land‐use abandonment and tourism‐linked increases in propagule pressure to test if the spread of alien species in the region will increase in the future. We modelled already naturalized alien species and new ornamental plants, accounting for interactions among global change components, and also competition with the native vegetation. Our results show that propagule pressure and climate change will interact to increase overall species richness of both naturalized aliens and new ornamentals, as well as their upper elevational limits and regional range‐sizes. Under climate change, woody aliens are predicted to more than double in range‐size and herbaceous species to occupy up to 20% of the park area. In contrast, land‐use abandonment will open new invasion opportunities for woody aliens, but decrease invasion probability for naturalized and ornamental alien herbs as a consequence of colonization by native trees. This emphasizes the importance of interactions with the native vegetation either for facilitating or potentially for curbing invasions. Overall, our work highlights an additional and previously underestimated threat for the fragile mountain flora of the Alps already facing climate changes, land‐use transformations and overexploitation by tourism.  相似文献   

19.
Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context‐dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non‐native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.  相似文献   

20.
Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local‐to‐regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β‐diversity—differences among sites in their species compositions—is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β‐diversity across land‐use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β‐diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land‐use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%–11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号