首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.  相似文献   

2.
Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness‐induced CCN1 activates β‐catenin nuclear translocation and signaling and that this contributes to upregulate N‐cadherin levels on the surface of the endothelium, in vitro. This facilitates N‐cadherin‐dependent cancer cell–endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness‐induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.  相似文献   

3.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF), has been shown to increase potently the permeability of endothelium and is highly expressed in breast cancer cells. In this study, we investigated the role of VEGF/VPF in breast cancer metastasis to the brain. Very little is known about the role of endothelial integrity in the extravasation of breast cancer cells to the brain. We hypothesized that VEGF/VPF, having potent vascular permeability activity, may support tumor cell penetration across blood vessels by inducing vascular leakage. To examine this role of VEGF/VPF, we used a Transwell culture system of the human brain microvascular endothelial cell (HBMEC) monolayer as an in vitro model for the blood vessels. We observed that VEGF/VPF significantly increased the penetration of the highly metastatic MDA-MB-231 breast cancer cells across the HBMEC monolayer. We found that the increased transendothelial migration (TM) of MDA-MB-231 cells resulted from the increased adhesion of tumor cells onto the HBMEC monolayer. These effects (TM and adhesion of tumor cells) were inhibited by the pre-treatment of the HBMEC monolayer with the VEGF/VPF receptor (KDR/Flk-1) inhibitor, SU-1498, and the calcium chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl)ester. These treatments of the HBMEC monolayer also inhibited VEGF/VPF-induced permeability and the cytoskeletal rearrangement of the monolayer. These data suggest that VEGF/VPF can modulate the TM of tumor cells by regulating the integrity of the HBMEC monolayer. Taken together, these findings indicate that VEGF/VPF might contribute to breast cancer metastasis by enhancing the TM of tumor cells through the down-regulation of endothelial integrity.  相似文献   

4.
Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-β, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-β1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, β1-integrin, calponin and α-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-β signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in transendothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-β-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-β-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation.  相似文献   

5.
Cadherins are cell adhesion receptors that play important roles in embryogenesis and tissue homoeostasis. Endothelial cells express various members of the cadherin superfamily, in particular vascular endothelial (VE-) cadherin, which is the main adhesion receptor of endothelial adherens junctions and neural (N-) cadherin, which is normally localized outside the junctions and may mediate adhesion between endothelial cells and non-endothelial cells. Dysregulation of cadherin expression has been implicated in tumor progression, in particular the loss of epithelial (E-) cadherin expression or function and the gain of N-cadherin. Moreover, more recently, aberrant expression of VE-cadherin was observed in certain cancer types. In breast carcinoma, VE-cadherin was shown to promote tumor cell proliferation and invasion through enhancing TGF-β signaling. Thus, in breast cancer, the cadherin switch involves another player, vascular endothelial cadherin, which is part of an intricate interplay of classical cadherins in breast cancer progression.  相似文献   

6.
The role of caveolin‐1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E‐cadherin in CAV1‐dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E‐cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co‐expression of E‐cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav‐1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E‐cadherin expression in B16F10 (E‐cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co‐expression of CAV1 and E‐cadherin in B16F10 (cav‐1/E‐cad) cells abolishes tumor formation, lung metastasis, increased Rac‐1 activity, and cell migration observed with B16F10 (cav‐1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac‐1 activation in these cells.  相似文献   

7.
Melanocytic behavior, survival, and proliferation are regulated through a complex system of cell–cell adhesion molecules. Pathologic changes leading to development of malignant melanoma, upset the delicate homeostatic balance between melanocytes and keratinocytes and can lead to altered expression of cell–cell adhesion and cell–cell communication molecules. Malignant transformation of melanocytes frequently coincides with loss of E‐cadherin expression. We now show loss of another member of the superfamily of classical cadherins, H‐cadherin (CDH13), which may be involved in the development of malignant melanoma. The provided data show that H‐cadherin expression is lost in nearly 80% of the analyzed melanoma cell lines. Knockdown of H‐cadherin using siRNA increases invasive capacity in melanocytes. Functional assays show that the re‐expression of H‐cadherin decreases migration and invasion capacity, as well as anchorage‐independent growth in comparison to control melanoma cells. Furthermore, melanoma cells, which re‐express H‐cadherin via stable transfection show a reduction in rate of tumor growth in a nu/nu mouse tumor model in comparison to the parental control transfected cell lines. Our study presents for the first time the down‐regulation of H‐cadherin in malignant melanomas and its possible functional relevance in maintenance healthy skin architecture.  相似文献   

8.
The most life‐threatening aspect of cancer is metastasis; cancer patient mortality is mainly due to metastasis. Among all metastases, presence of brain metastasis is one with the poorest prognosis; the median survival time can be counted in months. Therefore, prevention or decreasing their incidence would be highly desired both by patients and physicians. Metastatic cells invading the brain must breach the cerebral vasculature, primarily the blood‐brain barrier. The key step in this process is the establishment of firm adhesion between the cancer cell and the cerebral endothelial layer. Using the atomic force microscope, a high‐resolution force spectrograph, our aim was to explore the connections among the cell morphology, cellular mechanics, and biological function in the process of transendothelial migration of metastatic cancer cells. By immobilization of a melanoma cell to an atomic force microscope's cantilever, intercellular adhesion was directly measured at quasi‐physiological conditions. Hereby, we present our latest results by using this melanoma‐decorated probe. Binding characteristics to a confluent layer of brain endothelial cells was directly measured by means of single‐cell force spectroscopy. Adhesion dynamics and strength were characterized, and we present data about spatial distribution of elasticity and detachment strength. These results highlight the importance of cellular mechanics in brain metastasis formation and emphasize the enormous potential toward exploration of intercellular dynamic‐related processes.  相似文献   

9.
10.
Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N‐cadherin, a calcium‐dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N‐cadherin internalizes through clathrin‐mediated endocytosis (CME). Two tyrosine‐based motifs in the cytoplasmic domain of N‐cadherin recognized by the μ2 subunit of the AP‐2 adaptor complex are responsible for CME of N‐cadherin. Moreover, β‐catenin, a core component of the N‐cadherin adhesion complex, inhibits N‐cadherin endocytosis by masking the 2 tyrosine‐based motifs. Removal of β‐catenin facilitates μ2 binding to N‐cadherin, thereby increasing clathrin‐mediated N‐cadherin endocytosis and neurite outgrowth without affecting the steady‐state level of surface N‐cadherin. These results identify and characterize the mechanism controlling N‐cadherin endocytosis through β‐catenin‐regulated μ2 binding to modulate neurite outgrowth.   相似文献   

11.
N‐cadherin‐mediated adhesion is essential for maintaining the tissue architecture and stem cell niche in the developing neocortex. N‐cadherin expression level is precisely and dynamically controlled throughout development; however, the underlying regulatory mechanisms remain largely unknown. MicroRNAs (miRNAs) play an important role in the regulation of protein expression and subcellular localisation. In this study, we show that three miRNAs belonging to the miR379–410 cluster regulate N‐cadherin expression levels in neural stem cells and migrating neurons. The overexpression of these three miRNAs in radial glial cells repressed N‐cadherin expression and increased neural stem cell differentiation and neuronal migration. This phenotype was rescued when N‐cadherin was expressed from a miRNA‐insensitive construct. Transient abrogation of the miRNAs reduced stem cell differentiation and increased cell proliferation. The overexpression of these miRNAs specifically in newborn neurons delayed migration into the cortical plate, whereas the knockdown increased migration. Collectively, our results indicate a novel role for miRNAs of the miR379–410 cluster in the fine‐tuning of N‐cadherin expression level and in the regulation of neurogenesis and neuronal migration in the developing neocortex.  相似文献   

12.
Resistance to BRAF inhibitors (BRAFi) is one of the major challenges for targeted therapies for BRAF‐mutant melanomas. However, little is known about the role of microRNAs in conferring BRAFi resistance. Herein, we demonstrate that miR‐200c expression is significantly reduced whereas miR‐200c target genes including Bmi1, Zeb2, Tubb3, ABCG5, and MDR1 are significantly increased in melanomas that acquired BRAFi resistance compared to pretreatment tumor biopsies. Similar changes were observed in BRAFi‐resistant melanoma cell lines. Overexpression of miR‐200c or knock‐down of Bmi1 in resistant melanoma cells restores their sensitivities to BRAFi, leading to deactivation of the PI3K/AKT and MAPK signaling cascades, and acquisition of epithelial–mesenchymal transition‐like phenotypes, including upregulation of E‐cadherin, downregulation of N‐cadherin, and ABCG5 and MDR1 expression. Conversely, knock‐down of miR‐200c or overexpression of Bmi1 in BRAFi‐sensitive melanoma cells activates the PI3K/AKT and MAPK pathways, upregulates N‐cadherin, ABCG5, and MDR1 expression, and downregulates E‐cadherin expression, leading to BRAFi resistance. Together, our data identify miR‐200c as a critical signaling node in BRAFi‐resistant melanomas impacting the MAPK and PI3K/AKT pathways, suggesting miR‐200c as a potential therapeutic target for overcoming acquired BRAFi resistance.  相似文献   

13.
The expression of N‐cadherin, characteristic of various cancers, very often leads to changes in the cells' adhesive properties. Thus, we sought to find out if N‐cadherin expressed in various, but cancer‐related cells, differs in its functional properties that could contribute to variations in cells' phenotypes. In our work, measurements of an unbinding force of a single N‐cadherin molecule, probed with the same antibody both on a surface of living non‐malignant (HCV29) and malignant cells (T24) of bladder cancer, were carried out with the use of an atomic force microscopy. The results show the enhanced N‐cadherin level in T24 malignant cells (8.7% vs. 3.6% obtained for non‐malignant one), confirmed by the Western blot and the immunohistochemical staining. The effect was accompanied by changes in unbinding properties of an individual N‐cadherin molecule. Lower unbinding force values (26.1 ± 7.1 pN) in non‐malignant cells reveal less stable N‐cadherin complexes, as compared to malignant cells (61.7 ± 14.6 pN). This suggests the cancer‐related changes in a structure of the binding site of the antibody, located at the extracellular domain of N‐cadherin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
During their passage through the circulatory system, tumor cells undergo extensive interactions with various host cells including endothelial cells. The capacity of tumor cells to form metastasis is related to their ability to interact with and extravasate through endothelial cell layers, which involves multiple adhesive interactions between tumor cells and endothelium (EC). Thus it is essential to identify the adhesive receptors on the endothelial and melanoma surface that mediate those specific adhesive interactions. P-selectin and E-selectin have been reported as adhesion molecules that mediate the cell-cell interaction of endothelial cells and melanoma cells. However, not all melanoma cells express ligands for selectins. In this study, we elucidated the molecular constituents involved in the endothelial adhesion and extravasation of sialyl-Lewis(x/a)-negative melanoma cell lines under flow in the presence and absence of polymorphonuclear neutrophils (PMNs). Results show the interactions of alpha(4)beta(1) (VLA-4) on sialyl-Lewis(x/a)-negative melanoma cells and vascular adhesion molecule (VCAM-1) on inflamed EC supported melanoma adhesion to and subsequent extravasation through the EC in low shear flow. These findings provide clear evidence for a direct role of the VLA-4/VCAM-1 pathway in melanoma cell adhesion to and extravasation through the vascular endothelium in a shear flow. PMNs facilitated melanoma cell extravasation under both low and high shear conditions via the involvement of distinct molecular mechanisms. In the low shear regime, beta(2)-integrins were sufficient to enhance melanoma cell extravasation, whereas in the high shear regime, selectin ligands and beta(2)-integrins on PMNs were necessary for facilitating the melanoma extravasation process.  相似文献   

15.
16.
17.
Several different cytokines and growth factors secreted by mesenchymal stem cells (MSCs) have been hypothesized to play a role in breast cancer progression. By using a small panel of breast cancer cell lines (MCF‐7, T47D, and SK‐Br‐3 cells), we analyzed the role of interleukin‐6 (IL‐6) and vascular endothelial growth factor A (VEGF) in the cross‐talk between MSCs and breast cancer cells. We performed migration assays in which breast cancer cells were allowed to migrate in response to conditioned medium from MSCs (MSCs‐CM), in absence or in presence of the anti‐VEGF antibody bevacizumab or an anti‐IL‐6 antibody, alone or in combination. We found that anti‐VEGF and anti‐IL‐6 antibodies inhibited the migration of breast cancer cells and that the combination had an higher inhibitory effect. We next evaluated the effects of recombinant VEGF and IL‐6 proteins on breast cancer cell growth and migration. IL‐6 and VEGF had not significant effects on the proliferation of breast carcinoma cells. In contrast, both VEGF and IL‐6 significantly increased the ability to migrate of MCF‐7, T47D and SK‐Br‐3 cells, with the combination showing a greater effect as compared with treatment with a single protein. The combination of VEGF and IL‐6 produced in breast cancer cells a more significant and more persistent activation of MAPK, AKT, and p38MAPK intracellular signaling pathways. These results suggest that MSC‐secreted IL‐6 and VEGF may act as paracrine factors to sustain breast cancer cell migration. J. Cell. Biochem. 113: 3363–3370, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N‐sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N‐sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2‐mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM‐induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N‐sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2‐mediated cell–cell communication.  相似文献   

19.
The study aims to verify the hypothesis that up‐regulation of microRNA‐300 (miR‐300) targeting CUL4B promotes apoptosis and suppresses proliferation, migration, invasion, and epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells by regulating the Wnt/β‐catenin signaling pathway. Pancreatic cancer tissues and adjacent tissues were collected from 110 pancreatic cancer patients. Expression of miR‐300, CUL4B, Wnt, β‐catenin, E‐cadherin, N‐cadherin, Snail, GSK‐3β, and CyclinD1 were detected using qRT‐PCR and Western blot. CFPAC‐1, Capan‐1, and PANC‐1 were classified into blank, negative control (NC), miR‐300 mimics, miR‐300 inhibitors, siRNA‐CUL4B, and miR‐300 inhibitors + siRNA‐CUL4B groups. The proliferation, migration, invasion abilities, the cell cycle distribution, and apoptosis rates were measured in CCK‐8 and Transwell assays. Pancreatic cancer tissues showed increased CUL4B expression but decreased miR‐300 expression. When miR‐300 was lowly expressed, CUL4B was upregulated which in‐turn activated the Wnt/β‐catenin pathway to protect the β‐catenin expression and thus induce EMT. When miR‐300 was highly expressed, CUL4B was downregulated which in‐turn inhibited the Wnt/β‐catenin pathway to prevent EMT. Weakened cell migration and invasion abilities and enhanced apoptosis were observed in the CUL4B group. The miR‐300 inhibitors group exhibited an evident increase in growth rate accompanied the largest tumor volume. Smaller tumor volume and slower growth rate were observed in the miR‐300 mimics and siRNA‐CUL4B group. Our study concludes that lowly expressed miR‐300 may contribute to highly expressed CUL4B activating the Wnt/β‐catenin signaling pathway and further stimulating EMT, thus promoting proliferation and migration but suppressing apoptosis of pancreatic cancer cells.  相似文献   

20.
Melanoma is the most aggressive type of cutaneous tumor and the occurrence of metastasis makes it resistant to almost all available treatment and becomes incorrigible. Hence, identifying metastasis‐related biomarkers and effective therapeutic targets will assist in preventing metastasis and ameliorating cutaneous melanoma. In our present study, we reported kinesin family member 18B (KIF18B) as a novel contributor in cutaneous melanoma proliferation and metastasis, and it was found to be of great significance in predicting the prognosis of cutaneous melanoma patients. Bioinformatics analysis based on ONCOMINE, The Cancer Genome Atlas, and Genotype‐Tissue Expression database revealed that KIF18B was highly expressed in cutaneous melanoma and remarkably correlated with unfavorable clinical outcomes. Consistently, the results of the quantitative real‐time polymerase chain reaction exhibited that the expression of KIF18B was significantly higher in cutaneous melanoma cell lines than that in normal cells. In vitro, biological assays found that knockdown of KIF18B in cutaneous melanoma cells noticeably repressed cell proliferation, migration, and invasion, while inducing cell apoptosis. Moreover, the protein expression of E‐cadherin was enhanced while the expression of N‐cadherin, vimentin, and Snail was decreased in M14 cells after knocking down KIF18B. In addition, the phosphorylation of phosphoinositide 3‐kinase (PI3K) and extracellular‐signal‐regulated kinase (ERK) was significantly suppressed in M14 cells with silenced KIF18B. Above all, our results indicated that the repression of cutaneous melanoma cell migration and proliferation caused by KIF18B depletion suggested an oncogenic role of KIF18B in cutaneous melanoma, which acts through modulating epithelial‐mesenchymal transition and ERK/PI3K pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号