首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The n‐alkane composition in the leaf cuticular waxes of natural populations of Bosnian pine (Pinus heldreichii), Austrian pine (P. nigra), and Macedonian pine (P. peuce) was compared for the first time. The range of n‐alkanes was wider in P. nigra (C16 – C33) than in P. heldreichii and P. peuce (C18 – C33). Species also diverged in abundance and range of dominant n‐alkanes (P. heldreichii: C23, C27, and C25; P. nigra: C25, C27, C29, and C23; P. peuce: C29, C25, C27, and C23). Multivariate statistical analyses (PCA, DA, and CA) generally pointed out separation of populations of P. nigra from populations of P. heldreichii and P. peuce (which were, to a greater or lesser extent, separated too). However, position of these species on the basis of n‐alkane composition was in accordance neither with infrageneric classification nor with recent molecular and terpene investigations.  相似文献   

2.
3.
Species of Lasiodiplodia are important pathogens of a wide variety of plants covering a wide geographical distribution. These fungi can be associated with different symptoms such as stem cankers, shoot blights, fruit rots, dieback and gummosis. Diseases caused by Lasiodiplodia were surveyed on Eucalyptus urophylla × grandis, Polyscias balfouriana and Bougainvillea spectabilis in a nursery in southern China. Based on morphology characteristics and phylogenetic analyses of ITS rDNA sequences and translation elongation factor 1‐alpha (TEF‐1α) gene regions, four species of Lasiodiplodia were identified. Lasiodiplodia theobromae was identified from E. urophylla × grandis, P. balfouriana and B. spectabilis. L. hormozganensis, L. iraniensis and L. pseudotheobromae were identified from B. spectabilis. To our knowledge, with the exception of L. theobromae on E. urophylla × grandis, this study represents the first report of these fungi on the host plants. Pathogenicity tests showed that all Lasiodiplodia spp. obtained in this study are virulent to E. urophylla × grandis and B. spectabilis, and L. theobromae was virulent to P. balfouriana.  相似文献   

4.
Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S‐ethyl N,N‐dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S‐methyl‐N,N‐diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic‐dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD.  相似文献   

5.
Interspecific competition among carnivores has been linked to differences in behavior, morphology, and resource use. Insights into these interactions can enhance understanding of local ecological processes that can have impacts on the recovery of endangered species, such as the ocelot (Leopardus pardalis). Ocelots, bobcats (Lynx rufus), and coyotes (Canis latrans) share a small geographic range overlap from South Texas to south‐central Mexico but relationships among the three are poorly understood. From May 2011 to March 2018, we conducted a camera trap study to examine co‐occurrence patterns among ocelots, bobcats, and coyotes on the East Foundation's El Sauz Ranch in South Texas. We used a novel multiseason extension to multispecies occupancy models with ≥2 interacting species to conduct an exploratory analysis to examine interspecific interactions and examine the potential effects of patch‐level and landscape‐level metrics relative to the occurrence of these carnivores. We found strong evidence of seasonal mutual coexistence among all three species and observed a species‐specific seasonal trend in detection. Seasonal coexistence patterns were also explained by increasing distance from a high‐speed roadway. However, these results have important ecological implications for planning ocelot recovery in the rangelands of South Texas. This study suggests a coexistence among ocelots, bobcats, and coyotes under the environmental conditions on the El Sauz Ranch. Further research would provide a better understanding of the ecological mechanisms that facilitate coexistence within this community. As road networks in the region expand over the next few decades, large private working ranches will be needed to provide important habitat for ocelots and other carnivore species.  相似文献   

6.
Nesfatin‐1, corticotropin‐releasing hormone (CRH), thyrotropin‐releasing hormone (TRH), and hypothalamic neuronal histamine act as anorexigenics in the hypothalamus. We examined interactions among nesfatin‐1, CRH, TRH, and histamine in the regulation of feeding behavior in rodents. We investigated whether the anorectic effect of nesfatin‐1, α‐fluoromethyl histidine (FMH; a specific suicide inhibitor of histidine decarboxylase that depletes hypothalamic neuronal histamine), a CRH antagonist, or anti‐TRH antibody affects the anorectic effect of nesfatin‐1, whether nesfatin‐1 increases CRH and TRH contents and histamine turnover in the hypothalamus, and whether histamine increases nesfatin‐1 content in the hypothalamus. We also investigated whether nesfatin‐1 decreases food intake in mice with targeted disruption of the histamine H1 receptor (H1KO mice) and if the H1 receptor (H1‐R) co‐localizes in nesfatin‐1 neurons. Nesfatin‐1‐suppressed feeding was partially attenuated in rats administered with FMH, a CRH antagonist, or anti‐TRH antibody, and in H1KO mice. Nesfatin‐1 increased CRH and TRH levels and histamine turnover, whereas histamine increased nesfatin‐1 in the hypothalamus. Immunohistochemical analysis revealed H1‐R expression on nesfatin‐1 neurons in the paraventricular nucleus of the hypothalamus. These results indicate that CRH, TRH, and hypothalamic neuronal histamine mediate the suppressive effects of nesfatin‐1 on feeding behavior.  相似文献   

7.
Variation in susceptibility is ubiquitous in multi‐host, multi‐parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti‐parasite defence. This demonstrates the importance of deep phylogeny for understanding present‐day ecological interactions.  相似文献   

8.
9.
10.
11.
12.
13.
Comparative analysis of terpene diversity and differentiation of relict pines Pinus heldreichii, Pnigra, and P. peuce from the central Balkans was performed at the population level. Multivariate statistical analyses showed that the composition of needle terpenes reflects clear divergence among the pine species from different subgenera: P. peuce (subgenus Strobus) vs. P. nigra and P. heldreichii (subgenus Pinus). In addition, despite the described morphological similarities and the fact that P. nigra and P. heldreichii may spontaneously hybridize, our results indicated differentiation of their populations naturally growing in the same area. In accordance with recently proposed concept of ‘flavonic evolution’ in the genus Pinus, we assumed that the terpene profile of soft pine P. peuce, defined by high amounts of six monoterpenes, is more basal than those of hard pines P. nigra and P. heldreichii, which were characterized by high content levels of mainly sesquiterpenes. In order to establish precise positions of P. heldreichii, P. nigra and P. peuce within the taxonomic and phylogenetic tree, as well as develop suitable conservation strategies and future breeding efforts, it is necessary to perform additional morphological, biochemical, and genetic studies.  相似文献   

14.
  • Knowledge on the metabolism of polysaccharide reserves in wild species is still scarce. In natural sites we collected tubers of Arum italicum Mill. and A. maculatum L. – two geophytes with different apparent phenological timing, ecology and chorology – during five stages of the annual cycle in order to understand patterns of reserve accumulation and degradation.
  • Both the entire tuber and its proximal and distal to shoot portion were utilised. Pools of non‐structural carbohydrates (glucose, sucrose and starch), glucose‐6‐phosphate and ATP were analysed as important markers of carbohydrate metabolism.
  • In both species, starch and glucose content of the whole tuber significantly increased from sprouting to the maturation/senescence stages, whereas sucrose showed an opposite trend; ATP and glucose‐6‐phosphate were almost stable and dropped only at the end of the annual cycle. Considering the two different portions of the tuber, both ATP and glucose‐6‐phosphate concentrations were higher in proximity to the shoot in all seasonal stages, except the flowering stage.
  • Our findings suggest that seasonal carbon partitioning in the underground organ is driven by phenology and occurs independently of seasonal climate conditions. Moreover, our results show that starch degradation, sustained by elevated ATP and glucose‐6‐phosphate pools, starts in the peripheral, proximal‐to‐shoot portion of the tuber, consuming starch accumulated in the previous season, as a ‘Last In–First Out’ mechanism of carbohydrate storage.
  相似文献   

15.
16.
Triterpenes are thirty‐carbon compounds derived from the universal five‐carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large‐scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic‐targeting strategy. Plastid‐targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid‐targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.  相似文献   

17.
18.
Quantifying the anatomical data acquired from three‐dimensional (3D) images has become increasingly important in recent years. Visualization and image segmentation are essential for acquiring accurate and detailed anatomical data from images; however, plant tissues such as leaves are difficult to image by confocal or multi‐photon laser scanning microscopy because their airspaces generate optical aberrations. To overcome this problem, we established a staining method based on Nile Red in silicone‐oil solution. Our staining method enables color differentiation between lipid bilayer membranes and airspaces, while minimizing any damage to leaf development. By repeated applications of our staining method we performed time‐lapse imaging of a leaf over 5 days. To counteract the drastic decline in signal‐to‐noise ratio at greater tissue depths, we also developed a local thresholding method (direction‐selective local thresholding, DSLT) and an automated iterative segmentation algorithm. The segmentation algorithm uses the DSLT to extract the anatomical structures. Using the proposed methods, we accurately segmented 3D images of intact leaves to single‐cell resolution, and measured the airspace volumes in intact leaves.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号