首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

3.
The clinical application of stem cells offers great promise as a potential avenue for therapeutic use in neurodegenerative diseases. However, cell loss after transplantation remains a major challenge, which currently plagues the field. On the basis of our previous findings that fibroblast growth factor 21 (FGF‐21) protected neurons from glutamate excitotoxicity and that upregulation of FGF‐21 in a rat model of ischemic stroke was associated with neuroprotection, we proposed that overexpression of FGF‐21 protects bone marrow‐derived mesenchymal stem cells (MSCs) from apoptosis. To test this hypothesis, we examined whether the detrimental effects of apoptosis can be mitigated by the transgenic overexpression of FGF‐21 in MSCs. FGF‐21 was transduced into MSCs by lentivirus and its overexpression was confirmed by quantitative polymerase chain reaction. Moreover, FGF‐21 overexpression did not stimulate the expression of other FGF family members, suggesting it does not activate a positive feedback system. The effects of hydrogen peroxide (H2O2), tumor necrosis factor‐α (TNF‐α), and staurosporine, known inducers of apoptosis, were evaluated in FGF‐21 overexpressing MSCs and mCherry control MSCs. Caspases 3 and 7 activity was markedly and dose‐dependently increased by all three stimuli in mCherry MSCs. FGF‐21 overexpression robustly suppressed caspase activation induced by H2O2 and TNF‐α, but not staurosporine. Moreover, the assessment of apoptotic morphological changes confirmed the protective effects of FGF‐21 overexpression. Taken together, these results provide compelling evidence that FGF‐21 plays a crucial role in protecting MSCs from apoptosis induced by oxidative stress and inflammation and merits further investigation as a strategy for enhancing the therapeutic efficacy of stem cell‐based therapies.  相似文献   

4.
Hypoxia‐inducible factor‐2α (HIF‐2α) plays an important role in increasing cancer progression and distant metastasis in a variety of tumour types. We aimed to investigate its biological function and clinical significance in human pancreatic ductal adenocarcinoma (PDAC). A total of 283 paired PDAC tissues and adjacent normal tissues were collected from patients who underwent surgery or biopsy at Sun Yat‐sen Memorial Hospital between February 2004 and October 2016. In this study, we noted that HIF‐2α expression was significantly up‐regulated in PDAC, positively associated with disease stage, lymph‐node metastasis and patient survival, and identified as an independent prognostic factor of PDAC patients. We demonstrated that HIF‐2α silencing could reduce proliferation, migration and invasion of PDAC cells in vitro. The similar effect on growth was demonstrated in vivo. Furthermore, we noted that knock‐down of HIF‐2α significantly decreased the expression of glutamate oxaloacetate transaminase 1 (GOT1). Importantly, we confirmed that the PI3K/mTORC2 pathway promoted GOT1 expression by targeting HIF‐2α. Our study validated HIF‐2α was an important factor in PDAC progression and poor prognosis and may promote non‐canonical glutamine metabolism via activation of PI3K/mTORC2 pathway. Targeting HIF‐2α represents a novel prognostic biomarker and therapeutic target for patients with PDAC.  相似文献   

5.
6.
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia‐induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3‐kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling pathway in SH‐SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre‐treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)‐induced viability loss, reduced the proportion of apoptosis and regulated OGD‐mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD‐caused mitochondrial membrane potential and decomposition of caspase‐3 to cleaved caspase‐3, and heightened the B‐cell lymphoma 2 (Bcl‐2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH‐SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p‐Akt, p‐GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO‐1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD‐induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.  相似文献   

7.
Gestational diabetes mellitus (GDM) is known as different degree glucose intolerance that is initially identified during pregnancy. MicroRNAs (miRs) may be a potential candidate for treatment of GDM. Herein, we suggested that miR‐351 could be an inhibitor in the progression of GDM via the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway. Microarray analysis was used to identify differentially expressed genes and predict miRs regulating flotillin 2 (FLOT2). Target relationship between miR‐351 and FLOT2 was verified. Gestational diabetes mellitus mice were treated with a series of mimic, inhibitor and small interfering RNA to explore the effect of miR‐351 on insulin resistance (IR), cell apoptosis in pancreatic tissues and liver gluconeogenesis through evaluating GDM‐related biochemical indexes, as well as expression of miR‐351, FLOT2, PI3K/AKT pathway‐, IR‐ and liver gluconeogenesis‐related genes. MiR‐351 and FLOT2 were reported to be involved in GDM. FLOT2 was the target gene of miR‐351. Gestational diabetes mellitus mice exhibited IR and liver gluconeogenesis, up‐regulated FLOT2, activated PI3K/AKT pathway and down‐regulated miR‐351 in liver tissues. Additionally, miR‐351 overexpression and FLOT2 silencing decreased the levels of FLOT2, phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase, fasting blood glucose, fasting insulin, total cholesterol, triglyceride, glyeosylated haemoglobin and homeostasis model of assessment for IR index (HOMA‐IR), extent of PI3K and AKT phosphorylation, yet increased the levels of HOMA for islet β‐cell function, HOMA for insulin sensitivity index and glucose transporter 2 expression, indicating reduced cell apoptosis in pancreatic tissues and alleviated IR and liver gluconeogenesis. Our results reveal that up‐regulation of miR‐351 protects against IR and liver gluconeogenesis by repressing the PI3K/AKT pathway through regulating FLOT2 in GDM mice, which identifies miR‐351 as a potential therapeutic target for the clinical management of GDM.  相似文献   

8.
Insulin secretion from pancreatic β‐cells in response to sudden glucose stimulation is biphasic. Prolonged secretion in vivo requires synthesis, delivery to the plasma membrane (PM) and exocytosis of insulin secretory granules (SGs). Here, we provide the first agent‐based space‐resolved model for SG dynamics in pancreatic β‐cells. Using recent experimental data, we consider a single β‐cell with identical SGs moving on a phenomenologically represented cytoskeleton network. A single exocytotic machinery mediates SG exocytosis on the PM. This novel model reproduces the measured spatial organization of SGs and insulin secretion patterns under different stimulation protocols. It proposes that the insulin potentiation effect and the rising second‐phase secretion are mainly due to the increasing number of docking sites on the PM. Furthermore, it shows that 6 min after glucose stimulation, the ‘newcomer’ SGs are recruited from a region within less than 600 nm from the PM.   相似文献   

9.
Tumour necrosis factor‐α (TNF‐ α)is a major contributor to the pathogenesis of insulin resistance associated with obesity and type 2 diabetes. It has been found that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. We have hypothesized that TNF‐α‐induced insulin resistance is involved in endogenous H2S generation. The aim of the present study is to investigate the role of endogenous H2S in TNF‐α‐induced insulin resistance by studying 3T3‐L1 adipocytes. We found that treatment of 3T3‐L1 adipocytes with TNF‐α leads to deficiency in insulin‐stimulated glucose consumption and uptake and increase in endogenous H2S generation. We show that cystathionine γ‐lyase (CSE) is catalysed in 3T3‐L1 adipocytes to generate H2S and that CSE expression and activity are upregulated by TNF‐α treatment. Inhibited CSE by its potent inhibitors significantly attenuates TNF‐α‐induced insulin resistance in 3T3‐L1 adipocytes, whereas H2S treatment of 3T3‐L1 adipocytes impairs insulin‐stimulated glucose consumption and uptake. These data indicate that endogenous CSE/H2S system contributes to TNF‐α‐caused insulin resistance in 3T3‐L1 adipocytes. Our findings suggest that modulation of CSE/H2S system is a potential therapeutic avenue for insulin resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
11.
hESC (human embryonic stem cells), when differentiated into pancreatic β ILC (islet‐like clusters), have enormous potential for the cell transplantation therapy for Type 1 diabetes. We have developed a five‐step protocol in which the EBs (embryoid bodies) were first differentiated into definitive endoderm and subsequently into pancreatic lineage followed by formation of functional endocrine β islets, which were finally matured efficiently under 3D conditions. The conventional cytokines activin A and RA (retinoic acid) were used initially to obtain definitive endoderm. In the last step, ILC were further matured under 3D conditions using amino acid rich media (CMRL media) supplemented with anti‐hyperglycaemic hormone‐Glp1 (glucagon‐like peptide 1) analogue Liraglutide with prolonged t½ and Exendin 4. The differentiated islet‐like 3D clusters expressed bonafide mature and functional β‐cell markers‐PDX1 (pancreatic and duodenal homoeobox‐1), C‐peptide, insulin and MafA. Insulin synthesis de novo was confirmed by C‐peptide ELISA of culture supernatant in response to varying concentrations of glucose as well as agonist and antagonist of functional 3D β islet cells in vitro. Our results indicate the presence of almost 65% of insulin producing cells in 3D clusters. The cells were also found to ameliorate hyperglycaemia in STZ (streptozotocin) induced diabetic NOD/SCID (non‐obese diabetic/severe combined immunodeficiency) mouse up to 96 days of transplantation. This protocol provides a basis for 3D in vitro generation of long‐term in vivo functionally viable islets from hESC.  相似文献   

12.
The protective effects of insulin‐like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β‐amyloid (Aβ) injury may be mediated through its N‐terminal tripeptide glycine‐proline‐glutamate (GPE). GPE is cleaved to cyclo[Pro‐Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35‐treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin‐like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling.  相似文献   

13.
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.  相似文献   

14.
15.
Skeletal myoblasts withdrawing from cell cycle is a prerequisite for myodifferentiation, while upon proliferation/differentiation transformation, a large portion of myoblasts will undergo apoptosis. Skeletal fibroblasts, residing in muscle tissue both during and post myogenesis, have been proofed to play pivotal roles in muscle development, while their effect on myoblast apoptosis being coincident with differentiation has not been reported. Using a membrane insert co‐culture system, we studied it and found that the mitochondrial pathway played a crucial role in myoblast apoptosis during differentiation, and fibroblasts promoted not only cell cycle withdrawal but also myoblast survival in a paracrine fashion, which was coupled with upregulations of β1 integrin, phosphorylated Akt and anti‐apoptotic protein Bcl2. To determine the effect of β1 integrin in the process, we transfected myoblasts with siRNA specific for β1 integrin before co‐culture and found that β1 integrin knockdown abolished anti‐apoptotic ability of myoblasts and inhibited Akt activation and Bcl2 expression. Blockage of PI3K/Akt pathway with wortmannin also seriously impaired the protective effect of fibroblasts on myoblasts and fibroblast‐induced Bcl2 expression. The data demonstrated that fibroblasts protected myoblasts from intrinsic apoptosis associated with differentiation, and β1 integrin‐PI3K/Akt pathway activation was required for the process.  相似文献   

16.
17.
18.
Pancreatic β‐cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus (DM). In this study, we evaluated the effect of lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β‐cell apoptosis and dysfunction caused by streptozotocin (STZ) and the possible mechanisms implicated. The rat insulinoma cell line INS‐1 were pre‐treated with the indicated concentration of LNT for 30 min. and then incubated for 24 hrs with or without 0.5 mM STZ. We found that STZ treatment causes apoptosis of INS‐1 cells by enhancement of intracellular reactive oxygen species (ROS) accumulation, inducible nitric oxide synthase (iNOS) expression and nitric oxide release and activation of the c‐jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK) signalling pathways. However, LNT significantly increased cell viability and effectively attenuated STZ‐induced ROS production, iNOS expression and nitric oxide release and the activation of JNK and p38 MAPK in a dose‐dependent manner in vitro. Moreover, LNT dose‐dependently prevented STZ‐induced inhibition of insulin synthesis by blocking the activation of nuclear factor kappa beta and increasing the level of Pdx‐1 in INS‐1 cells. Together these findings suggest that LNT could protect against pancreatic β‐cell apoptosis and dysfunction caused by STZ and therefore may be a potential pharmacological agent for preventing pancreatic β‐cell damage caused by oxidative stress associated with diabetes.  相似文献   

19.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

20.
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)‐induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP‐sensitive K+ (KATP) channel blocker 5‐hydroxydecanoate (5‐HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit‐8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt‐C), Bax, Bcl‐2, cleaved caspase‐3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK‐3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R‐induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt‐C release into cytoplasm, and maintenance of ΔΨm. Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK‐3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5‐HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK‐3β and Akt/mTOR signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号