首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 diabetes is characterized by insulin resistance and pancreatic β cell dysfunction, the latter possibly caused by a defect in insulin signaling in β cells. Inhibition of class IA phosphatidylinositol 3-kinase (PI3K), using a mouse model lacking the pik3r1 gene specifically in β cells and the pik3r2 gene systemically (βDKO mouse), results in glucose intolerance and reduced insulin secretion in response to glucose. β cells of βDKO mice had defective exocytosis machinery due to decreased expression of soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins and loss of cell-cell synchronization in terms of Ca(2+) influx. These defects were normalized by expression of a constitutively active form of Akt in the islets of βDKO mice, preserving insulin secretion in response to glucose. The class IA PI3K pathway in β cells in?vivo is important in the regulation of insulin secretion and may be a therapeutic target for type 2 diabetes.  相似文献   

2.
3.
4.
5.
Impaired insulin secretion contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). Treatment with the incretin hormone glucagon-like peptide-1 (GLP-1) potentiates insulin secretion and improves metabolic control in humans with T2DM. GLP-1 receptor-mediated signaling leading to insulin secretion occurs via cyclic AMP stimulated protein kinase A (PKA)- as well as guanine nucleotide exchange factor-mediated pathways. However, how these two pathways integrate and coordinate insulin secretion remains poorly understood. Here we show that these incretin-stimulated pathways converge at the level of snapin, and that PKA-dependent phosphorylation of snapin increases interaction among insulin secretory vesicle-associated proteins, thereby potentiating glucose-stimulated insulin secretion (GSIS). In diabetic islets with impaired GSIS, snapin phosphorylation is reduced, and expression of a snapin mutant, which mimics site-specific phosphorylation, restores GSIS. Thus, snapin is a critical node in GSIS regulation and provides a potential therapeutic target to improve β cell function in T2DM.  相似文献   

6.
7.
阿尔茨海默病(Alzheimer’s disease, AD)是一种以进行性痴呆为主要特征的中枢神经系统退行性疾病,其认知功能障碍可能与Ⅱ型糖尿病(type 2 diabetes, T2DM)诱发的胰岛素抵抗所损伤的PI3K/Akt胰岛素信号级联通路相关。胰岛素是调节机体新陈代谢的重要激素,通过与神经细胞表面的胰岛素受体结合激活PI3K/Akt信号通路,以调控葡萄糖、脂质的代谢。任何中间媒介功能紊乱所导致的脑胰岛素水平和胰岛素敏感性的降低都会损坏PI3K/Akt信号通路,诱发脑能量代谢障碍、Aβ沉积、Tau蛋白过度磷酸化,引起并加重AD认知功能障碍。因此,本文以PI3K/Akt胰岛素信号通路为主线,揭示了T2DM中脑胰岛素抵抗(insulin resistance, IR)与AD之间的复杂机制,旨在加深对脑IR介导的AD病理过程的系统性理解,借此为延缓或治疗AD的认知功能障碍提供理论基础。  相似文献   

8.
Hypoxia/reoxygenation (H/R)‐induced injury is the key factor associated with islet graft dysfunction. This study aims to examine the effect of mesenchymal stem cells (MSCs) on islet survival and insulin secretion under H/R conditions. Islets from rats were isolated, purified, cultured with or without MSCs, and exposed to hypoxia (O2 ≤ 1%) for 8 h and reoxygenation for 24 and 48 h, respectively. Islet function was evaluated by measuring basal and glucose‐stimulated insulin secretion (GSIS). Apoptotic islet cells were quantified using Annexin V‐FITC. Anti‐apoptotic effects were confirmed by mRNA expression analysis of hypoxia‐resistant molecules, HIF‐1α, HO‐1, and COX‐2, using semi‐quantitative retrieval polymerase chain reaction (RT‐PCR). Insulin expression in the implanted islets was detected by immunohistological analysis. The main results show that the stimulation index (SI) of GSIS was maintained at higher levels in islets co‐cultured with MSCs. The MSCs protected the islets from H/R‐induced injury by decreasing the apoptotic cell ratio and increasing HIF‐1α, HO‐1, and COX‐2 mRNA expression. Seven days after islet transplantation, insulin expression in the MSC‐islets group significantly differed from that of the islets‐alone group. We proposed that MSCs could promote anti‐apoptotic gene expression by enhancing their resistance to H/R‐induced apoptosis and dysfunction. This study provides an experimental basis for therapeutic strategies based on enhancing islet function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Previous studies have reported both positive and negative effects of culture of islets at high glucose concentrations on regulated insulin secretion. Here, we have reexamined this question in mouse islets and determined the role of changes in lipid synthesis in the effects of glucose. Glucose-stimulated insulin secretion (GSIS) and gene expression were examined in islets from C57BL/6 mice or littermates deleted for sterol-regulatory element binding protein-1 (SREBP1) after 4 days of culture at high glucose concentrations. Culture of control islets at 30 versus 8 mmol/l glucose led to enhanced secretion at both basal (3 mmol/l) and stimulatory (17 mmol/l) glucose concentrations and to enhanced triacylglycerol accumulation. These changes were associated with increases in the expression of genes involved in glucose sensing (glucose transporter 2, glucokinase, sulfonylurea receptor 1, inwardly rectifying K(+) channel 6.2), differentiation (pancreatic duodenal homeobox 1), and lipogenesis (Srebp1, fatty acid synthase, acetyl-coenzyme A carboxylase 1, stearoyl-coenzyme A desaturase 1). When cultured at either 8 or 30 mmol/l glucose, SREBP1-deficient (SREBP1(-/-)) islets displayed reduced GSIS and triacylglycerol content compared with normal islets. Correspondingly, glucose induction of the above genes in control islets was no longer observed in SREBP1(-/-) mouse islets. We conclude that enhanced lipid synthesis mediated by SREBP1c-dependent genes is required for the adaptive changes in islet gene expression and insulin secretion at high glucose concentrations.  相似文献   

10.
11.
The aim of the study was to investigate the impact of hyperthyroidism on the characteristics of the islet insulin secretory response to glucose, particularly the consequences of competition between thyroid hormone and peroxisome proliferator-activated receptor (PPAR)alpha in the regulation of islet adaptations to starvation and dietary lipid-induced insulin resistance. Rats maintained on standard (low-fat/high-carbohydrate) diet or high-fat/low-carbohydrate diet were rendered hyperthyroid (HT) by triiodothyronine (T(3)) administration (1 mg.kg body wt(-1).day(-1) sc, 3 days). The PPARalpha agonist WY14643 (50 mg/kg body wt ip) was administered 24 h before sampling. Glucose-stimulated insulin secretion (GSIS) was assessed during hyperglycemic clamps or after acute glucose bolus injection in vivo and with step-up and step-down islet perifusions. Hyperthyroidism decreased the glucose responsiveness of GSIS, precluding sufficient enhancement of insulin secretion for the degree of insulin resistance, in rats fed either standard diet or high-fat diet. Hyperthyroidism partially opposed the starvation-induced increase in the glucose threshold for GSIS and decrease in glucose responsiveness. WY14643 administration restored glucose tolerance by enhancing GSIS in fed HT rats and relieved the impact of hyperthyroidism to partially oppose islet starvation adaptations. Competition between thyroid hormone receptor (TR) and PPARalpha influences the characteristics of GSIS, such that hyperthyroidism impairs GSIS while PPARalpha activation (and increased dietary lipid) opposes TR signaling and restores GSIS in the fed hyperthyroid state. Increased islet PPARalpha signaling and decreased TR signaling during starvation facilitates appropriate modification of islet function.  相似文献   

12.
We examined whether the additional demand for insulin secretion imposed by dietary saturated fat-induced insulin resistance during pregnancy is accommodated at late pregnancy, already characterized by insulin resistance. We also assessed whether effects of dietary saturated fat are influenced by PPARalpha activation or substitution of 7% of dietary fatty acids (FAs) with long-chain omega-3 FA, manipulations that improve insulin action in the nonpregnant state. Glucose tolerance at day 19 of pregnancy in the rat was impaired by high-saturated-fat feeding throughout pregnancy. Despite modestly enhanced glucose-stimulated insulin secretion (GSIS) in vivo, islet perifusions revealed an increased glucose threshold and decreased glucose responsiveness of GSIS in the saturated-fat-fed pregnant group. Thus, insulin resistance evoked by dietary saturated fat is partially countered by augmented insulin secretion, but compensation is compromised by impaired islet function. Substitution of 7% of saturated FA with long-chain omega-3 FA suppressed GSIS in vivo but did not modify the effect of saturated-fat feeding to impair GSIS by perifused islets. PPARalpha activation (24 h) rescued impaired islet function that was identified using perifused islets, but GSIS in vivo was suppressed such that glucose tolerance was not improved, suggesting modification of the feedback loop between insulin action and secretion.  相似文献   

13.
The phosphatidylinositol-3-kinase-dependent kinase, Akt2, plays a central role in mediating insulin effects in glucose-metabolizing tissues. Akt2 knockout mice display insulin resistance with a reactive increase in pancreatic islet mass and hyperinsulinemia. The related phosphatidylinositol-3-kinase-dependent kinase, serum- and glucocorticoid-regulated kinase 3 (SGK3), is essential for normal postnatal hair follicle development but plays no apparent role in glucose homeostasis. We report here an unexpected role of SGK3 in islet β-cell function, which is revealed in Akt2/SGK3 double-knockout (DKO) mice. DKO mice have markedly worse glucose homeostasis than Akt2 single-null animals, including greater baseline glucose, and greater rise in blood glucose after glucose challenge. However, surprisingly, our data strongly support the idea that this exacerbation of the glucose-handling defect is due to impaired β-cell function, rather than increased insulin resistance in peripheral tissues. DKO mice had lower plasma insulin and C-peptide levels, lower β-cell mass, reduced glucose-stimulated insulin secretion, and greater sensitivity to exogenous insulin than Akt2 single nulls. We further demonstrated that SGK3 is strongly expressed in normal mouse islets and, interestingly, that β-catenin expression is dramatically lower in the islets of DKO mice than in those of Akt2(-/-)/SGK3(+/+) or Akt2(-/-)/SGK3(+/-) mice. Taken together, these data strongly suggest that SGK3 plays a previously unappreciated role in glucose homeostasis, likely through direct effects within β-cells, to stimulate proliferation and insulin release, at least in part by controlling the expression and activity of β-catenin.  相似文献   

14.
Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up‐regulating Bcl‐2 expression and decreasing the ratio of Bax to Bcl‐2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC‐1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production.  相似文献   

15.
Fibroblast growth factor‐2 (FGF‐2) is widely used to culture human embryonic stem cells (hESC) and induced pluripotent stem (iPS) cells. Despite its importance in maintaining undifferentiated hESC phenotype, a lack of understanding in the role of FGF‐2 still exists. Here, we investigate the signaling events in hESC following the addition of exogenous FGF‐2. In this study, we show that hESC express all forms of fibroblast growth factor receptors (FGFRs) which co‐localize on Oct3/4 positive cells. Furthermore, downregulation of Oct3/4 in hESC occurs following treatment with an FGFR inhibitor, suggesting that FGF signaling may regulate Oct3/4 expression. This is also observed in iPS cells. Also, downstream of FGF signaling, both mitogen activated protein kinase (MAPK) and phosphoinositide 3‐kinase pathways (PI3‐K) are activated following FGF‐2 stimulation. Notably, inhibition of MAPK and PI3‐K signaling using specific kinase inhibitors revealed that activated PI3‐K, rather than MAPK, can mediate pluripotent marker expression. To understand the importance of PI3‐K activation, activation of Wnt/β‐catenin by FGF‐2 was investigated. Wnt signaling had been implicated to have a role in maintaining of pluripotent hESC. We found that upon FGF‐2 stimulation, GSK3β is phosphorylated following which nuclear translocation of β‐catenin and TCF/LEF activation occurs. Interestingly, inhibition of the Wnt pathway with Dikkopf‐1 (DKK‐1) resulted in only partial suppression of the FGF‐2 induced TCF/LEF activity. Prolonged culture of hESC with DKK‐1 did not affect pluripotent marker expression. These results suggest that FGF‐2 mediated PI3‐K signaling may have a direct role in modulating the downstream of Wnt pathway to maintain undifferentiated hESC. J. Cell. Physiol. 225: 417–428, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Chronic growth hormone (GH) therapy has been shown to cause insulin resistance, but the mechanism remains unknown. PTEN, a tumor suppressor gene, is a major negative regulator of insulin signaling. In this study, we explored the effect of chronic GH on insulin signaling in the context of PTEN function. Balb/c healthy mice were given recombinant human or bovine GH intraperitoneally for 3 weeks. We found that phosphorylation of Akt was significantly decreased in chronic GH group and the expression of PTEN was significantly increased. We further examined this effect in the streptozotocin-induced Type I diabetic mouse model, in which endogenous insulin secretion was disrupted. Insulin/PI3K/Akt signaling was impaired. However, different from the observation in healthy mice, the expression of PTEN did not increase. Similarly, PTEN expression did not significantly increase in chronic GH-treated mice with hypoinsulinemia induced by prolonged fasting. We conducted in-vitro experiments in HepG2 cells to validate our in-vivo findings. Long-term exposure to GH caused similar resistance of insulin/PI3K/Akt signaling in HepG2 cells; and over-expression of PTEN enhanced the impairment of insulin signaling. On the other hand, disabling the PTEN gene by transfecting the mutant PTEN construct C124S or siPTEN, disrupted the chronic GH induced insulin resistance. Our data demonstrate that PTEN plays an important role in chronic-GH-induced insulin resistance. These findings may have implication in other pathological insulin resistance.  相似文献   

17.
An adipokine resistin, a small cysteine-rich protein, is one of the major risk factors of insulin resistance. In the present study, transiently resistin-expressing mice using adenovirus method showed an impaired glucose tolerance due to insulin resistance. We found that resistin-expressing mice exhibited impaired insulin secretory response to glucose. In addition, in vitro treatment with resistin for 1 day induced insulin resistance in pancreatic islets and impaired glucose-stimulated insulin secretion by elevating insulin release at basal glucose (2.8 mM) and suppressing insulin release at stimulatory glucose (8.3 mM). In addition, resistin inhibited insulin-induced phosphorylation of Akt in islets as well as other insulin target organs. Furthermore, resistin induced SOCS-3 expression in beta-cells. In conclusion, resistin induces insulin resistance in islet beta-cells at least partly via induction of SOCS-3 expression and reduction of Akt phosphorylation and impairs glucose-induced insulin secretion.  相似文献   

18.
Although peroxisome proliferator-activated receptor (PPAR)gamma agonists ameliorate insulin resistance, they sometimes cause body weight gain, and the effect of PPAR agonists on insulin secretion is unclear. We evaluated the effects of combination therapy with a PPARgamma agonist, pioglitazone, and a PPARalpha agonist, bezafibrate, and a dual agonist, KRP-297, for 4 wk in male C57BL/6J mice and db/db mice, and we investigated glucose-stimulated insulin secretion (GSIS) by in situ pancreatic perfusion. Body weight gain in db/db mice was less with KRP-297 treatment than with pioglitazone or pioglitazone + bezafibrate treatment. Plasma glucose, insulin, triglyceride, and nonesterified fatty acid levels were elevated in untreated db/db mice compared with untreated C57BL/6J mice, and these parameters were significantly ameliorated in the PPARgamma agonist-treated groups. Also, PPARgamma agonists ameliorated the diminished GSIS and insulin content, and they preserved insulin and GLUT2 staining in db/db mice. GSIS was further increased by PPARgamma and -alpha agonists. We conclude that combination therapy with PPARgamma and PPARalpha agonists may be more useful with respect to body weight and pancreatic GSIS in type 2 diabetes with obesity.  相似文献   

19.
Deterioration of functional islet β-cell mass is the final step in progression to Type 2 diabetes. We previously reported that overexpression of Nkx6.1 in rat islets has the dual effects of enhancing glucose-stimulated insulin secretion (GSIS) and increasing β-cell replication. Here we show that Nkx6.1 strongly upregulates the prohormone VGF in rat islets and that VGF is both necessary and sufficient for Nkx6.1-mediated enhancement of GSIS. Moreover, the VGF-derived peptide TLQP-21 potentiates GSIS in rat and human islets and improves glucose tolerance in vivo. Chronic injection of TLQP-21 in prediabetic ZDF rats preserves islet mass and slows diabetes onset. TLQP-21 prevents islet cell apoptosis by a pathway similar to that used by GLP-1, but independent of the GLP-1, GIP, or VIP receptors. Unlike GLP-1, TLQP-21 does not inhibit gastric emptying or increase heart rate. We conclude that TLQP-21 is a targeted agent for enhancing islet β-cell survival and function.  相似文献   

20.

Aims/hypothesis

Changes in cellular cholesterol level may contribute to beta cell dysfunction. Islets from low density lipoprotein receptor knockout (LDLR−/−) mice have higher cholesterol content and secrete less insulin than wild-type (WT) mice. Here, we investigated the association between cholesterol content, insulin secretion and Ca2 + handling in these islets.

Methods

Isolated islets from both LDLR−/− and WT mice were used for measurements of insulin secretion (radioimmunoassay), cholesterol content (fluorimetric assay), cytosolic Ca2 + level (fura-2AM) and SNARE protein expression (VAMP-2, SNAP-25 and syntaxin-1A). Cholesterol was depleted by incubating the islets with increasing concentrations (0–10 mmol/l) of methyl-beta-cyclodextrin (MβCD).

Results

The first and second phases of glucose-stimulated insulin secretion (GSIS) were lower in LDLR−/− than in WT islets, paralleled by an impairment of Ca2 + handling in the former. SNAP-25 and VAMP-2, but not syntaxin-1A, were reduced in LDLR−/− compared with WT islets. Removal of excess cholesterol from LDLR−/− islets normalized glucose- and tolbutamide-induced insulin release. Glucose-stimulated Ca2 + handling was also normalized in cholesterol-depleted LDLR−/− islets. Cholesterol removal from WT islets by 0.1 and 1.0 mmol/l MβCD impaired both GSIS and Ca2 + handling. In addition, at 10 mmol/l MβCD WT islet showed a loss of membrane integrity and higher DNA fragmentation.

Conclusion

Abnormally high (LDLR−/− islets) or low cholesterol content (WT islets treated with MβCD) alters both GSIS and Ca2 + handling. Normalization of cholesterol improves Ca2 + handling and insulin secretion in LDLR−/− islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号