首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circular economy concepts, practices, and policies are increasingly drawing attention as important means for the pursuit of sustainable development. This article uses a conceptual framework to catalogue and investigate policy efforts for the circular economy in China. Based on the framework, policy prototypes and specific examples are identified: resource‐oriented, production‐oriented, waste, and use‐oriented and life cycle policies. A comprehensive review of 280 related policies shows that China has a long history of resource‐oriented policies and implemented production‐oriented policies very quickly after the year 2000. China's policies toward the circular economy became more comprehensive through time, with a broad engagement of government agencies, an extensive and progressive coverage of recycling opportunities, production initiatives across multiple scales, and use of different policy instruments. The continuous progress has been driven by proactive state actors and their learning from the international society. The current policy framework, however, is concerned more with the means rather than the ends of the circular economy, and relies too much on direct subsidies and other financial incentives. Policy making can be improved by more explicit consideration of the whole production life cycle and use of market‐based policy design.  相似文献   

2.
This paper identifies the extent to which circular economy (CE) practices are relevant for the implementation of the Sustainable Development Goals (SDGs). The results of a literature review and a matching exercise to determine the relationship between CE practices and SDG targets show that CE practices, potentially, can contribute directly to achieving a significant number of SDG targets. The strongest relationships exist between CE practices and the targets of SDG 6 (Clean Water and Sanitation), SDG 7 (Affordable and Clean Energy), SDG 8 (Decent Work and Economic Growth), SDG 12 (Responsible Consumption and Production), and SDG 15 (Life on Land). The paper also explores synergies that can be created through CE practices among several of the SDG targets. Furthermore, it identifies several potential trade‐offs between targets for decent work, safe working environments, human health and current CE practices relating to recycling of municipal waste, e‐waste and wastewater, and provides suggestions how these can be overcome. The paper concludes that CE practices can be applied as a “toolbox” and specific implementation approaches for achieving a sizeable number of SDG targets. Further empirical research is necessary to determine which specific types of partnerships and means of implementation are required to apply CE practices in the SDG context.  相似文献   

3.
The concept of a circular economy (CE) is gaining increasing attention from policy makers, industry, and academia. There is a rapidly evolving debate on definitions, limitations, the contribution to a wider sustainability agenda, and a need for indicators to assess the effectiveness of circular economy measures at larger scales. Herein, we present a framework for a comprehensive and economy‐wide biophysical assessment of a CE, utilizing and systematically linking official statistics on resource extraction and use and waste flows in a mass‐balanced approach. This framework builds on the widely applied framework of economy‐wide material flow accounting and expands it by integrating waste flows, recycling, and downcycled materials. We propose a comprehensive set of indicators that measure the scale and circularity of total material and waste flows and their socioeconomic and ecological loop closing. We applied this framework in the context of monitoring efforts for a CE in the European Union (EU28) for the year 2014. We found that 7.4 gigatons (Gt) of materials were processed in the EU and only 0.71 Gt of them were secondary materials. The derived input socioeconomic cycling rate of materials was therefore 9.6%. Further, of the 4.8 Gt of interim output flows, 14.8% were recycled or downcycled. Based on these findings and our first efforts in assessing sensitivity of the framework, a number of improvements are deemed necessary: improved reporting of wastes, explicit modeling of societal in‐use stocks, introduction of criteria for ecological cycling, and disaggregated mass‐based indicators to evaluate environmental impacts of different materials and circularity initiatives. This article met the requirements for a gold – gold JIE data openness badge described at http://jie.click/badges .  相似文献   

4.
The most recognized definition of the circular economy is that it is a restorative and regenerative economy. Despite the wide use and importance attributed to the concepts of “restoration” and “regeneration,” they are rarely defined or explained in the circular economy literature. In this context, this study critically examines the two terms, while providing guidance on their future utilization and development. Specifically, the study investigates the origin of the concepts, their adoption in frameworks that anticipated the idea of the circular economy, and their connotations in the circular economy literature. The examination supports the need for clear and distinct definitions, combined with precision in usage. From a review of the literature, restoration is a better‐defined concept than regeneration, although it needs conceptual re‐enforcement relative to the biological/ecological aspects of the circular economy. This study suggests looking in the direction of restoration ecology, a well‐established branch of ecological research. Conversely, regeneration is a symbolic/evocative term with little practical application in the context of circular systems except in the case of certain agricultural practices. Until new conceptual developments intervene, regeneration does not seem to be applicable to the economy as a whole and because of this, might be abandoned as a guiding principle of the circular economy. Unlike regeneration, restoration can be considered a core principle because it has widespread application and can be a point of reference for circular applications. This does not preclude the possibility that other concepts may be needed to augment restoration.  相似文献   

5.
The rapid technological evolution and adoption of consumer electronics highlights a growing need for adaptive methodologies to evaluate material consumption at the intersection of technological change and increasing consumption. While dematerialization and the circular economy (CE) have both been proposed to mitigate increasing material consumption, recent research has shown that these methods may be ineffective at achieving net material use reduction: When focused on specific products, these methods neglect the effects of complex interactions among and increasing consumption of consumer electronic products. The research presented here develops and applies a material flow analysis aimed at evaluating an entire “product ecosystem,” thereby including the effects of increasing consumption, product trade‐offs, and technological innovations. Results are then used to evaluate the potential efficacy of “natural” dematerialization (occurring as technology advances or smaller products substitute for larger ones) and CE (closing the loop between secondary material supply and primary material demand). Results show that material consumption by the ecosystem of electronics commonly used by U.S. households peaked in 2000. This consumption relies on increasingly diverse materials, including gold, cobalt, and indium, for whom secondary supply is still negligible, particularly given low recovery rates, often less than 1%. Potential circularity metrics of material “dilution,” “dispersion,” and “demand mismatch” are also evaluated, and indicate that CE approaches aimed at closing the loop on consumer electronic material still face several critical barriers particularly related to design and efficient recycling infrastructure.  相似文献   

6.
Due to resource scarcity and environmental degradation, a new development concept emphasizing environmental concerns, called the circular economy (CE), has been enacted in legislation in China. This environmental management concept can be implemented at three levels, namely, region, industrial zone, and individual enterprise, with the objective of boosting economic development while lessening environmental and resource challenges. Environmental supply chain cooperation (ESCC), an approach that utilizes customer and supplier cooperation in environmental management, has been initiated among Chinese enterprises. Using survey data collected from 396 Chinese manufacturers, we examine the role of ESCC practices in influencing the relationship between implementing CE practices and the achievement of performance outcomes by testing the moderation and mediation effects of ESCC practices on the CE practice‐performance relationship through hierarchical regression analysis. Our data analyses indicate that ESCC practices are useful by moderation and, in some cases, essential by mediation, for Chinese manufacturers seeking to realize the performance targets desired in CE practices. The results highlight the need for Chinese manufacturers to improve supply chain coordination in their implementation of CE. On the policy side, our research findings suggest that ESCC practices are beneficial and, in some cases, necessary for the development of CE in China.  相似文献   

7.
武志杰  张丽莉 《生态学杂志》2006,25(10):1245-1251
循环经济是经济效益与环境效益有机结合的一种新的经济发展模式,将经济发展推向循环经济的轨道是保证可持续发展的重要举措。循环经济具有深刻的经济学基础和生态学基础,发展循环经济具有重要的现实意义,它是生态社会最适宜的经济发展模式,世界发达国家已在发展循环经济领域取得了较大成就。本文从循环经济的基础理论入手,阐述了我国发展循环经济的现状、重要意义和所面临的问题,提出我国发展循环经济的对策,并指出循环经济是中国21世纪经济可持续发展模式的必然选择。  相似文献   

8.
The circular economy (CE) requires companies to rethink their supply chains and business models. Several frameworks found in the academic and practitioner literature propose circular economy business models (CEBMs) to redefine how companies create value while adhering to CE principles. A review of these frameworks shows that some models are frequently discussed, some are framework specific, and some use a different wording to refer to similar CEBMs, pointing to the need to consolidate the current state of the art. We conduct a morphological analysis of 26 current CEBMs from the literature, which includes defining their major business model dimensions and identifying the specific characteristics of these dimensions. Based on this analysis, we identify a broad range of business model design options and propose six major CEBM patterns with the potential to support the closing of resource flows: repair and maintenance; reuse and redistribution; refurbishment and remanufacturing; recycling; cascading and repurposing; and organic feedstock business model patterns. We also discuss different design strategies to support the development of these CEBMs.  相似文献   

9.
10.
Plastic recycling is promoted in the transition toward a circular economy and a closed plastic loop, typically using mass‐based recycling targets. Plastic from household waste (HHW) is contaminated and heterogeneous, and recycled plastic from HHW often has a limited application range, due to reduced quality. To correctly assess the ability to close plastic loops via recycling, both plastic quantities and qualities need to be evaluated. This study defines a circularity potential representing the ability of a recovery system to close material loops assuming steady‐state market conditions. Based on an average plastic waste composition including impurities, 84 recovery scenarios representing a wide range of sorting schemes, source‐separation efficiencies, and material recovery facility (MRF) configurations and performances were assessed. The qualities of the recovered fractions were assessed based on contamination and the circularity potential calculated for each scenario in a European context. Across all scenarios, 17% to 100% of the generated plastic mass could be recovered, with higher source‐separation and MRF efficiencies leading to higher recovery. Including quality, however, at best 55% of the generated plastic was suitable for recycling due to contamination. Source‐separation, a high number of target fractions, and efficient MRF recovery were found to be critical. The circularity potential illustrated that less than 42% of the plastic loop can be closed with current technology and raw material demands. Hence, Europe is still far from able to close the plastic loop. When transitioning toward a circular economy, the focus should be on limiting impurities and losses through product design, technology improvement, and more targeted plastic waste management.  相似文献   

11.
Circular economy (CE) describes a concept that aims at saving resources by minimizing the use of material and energy over the entire life‐cycle of products, including production and repair, as well as reuse and recycling. CE innovations help to realize the goals of sustainable development by targeting environmental, economic, and social dimensions of sustainability. This paper looks at the economic and social dimensions by investigating whether firms with CE innovations perform better or worse in terms of sales growth and employment. Our econometric analysis uses data from two waves of the German part of the Community Innovation Survey. Quantile regressions show that CE innovations are positively linked to turnover and employment growth. While there is no statistically significant impact on labor productivity, at the same time, firms with CE innovations show a significantly better financial standing.  相似文献   

12.
Action to pursue the circular economy (CE) transition is burgeoning in the government and the private sector. Does this action signal that CE is a distinct field of research with a unique disciplinary identity? This article argues that CE has reached field status, through its own epistemic communities characterized by increasingly shared methodological perspectives and normative ideals, and through institutionalized knowledge development through research journals and authority structures. The recent growth of CE research points toward more contextualized and nuanced operationalizations of the concept, evidence that the field is approaching a threshold state of maturity. Drawing on observations from academic literature and discussions with researchers and experts, we trace the process by which CE has arrived at the status of a field. The article concludes with reflections on research directions.  相似文献   

13.
The implementation of global sustainability has gained worldwide attention in recent years. The Organization Environmental Footprint, which encompasses 14 impact categories, is a multicriteria measure of the environmental performance of goods and services provided by an organization from a life cycle perspective. In this article, the focus is on quantifying the Organization Environmental Footprint of a construction company in Spain. By applying an environmentally extended input‐output approach, its total footprint and impacts along the supply chain from two consecutive years were calculated. The results show that the environmental impacts from the second year of implementation were significantly higher than those from the first year. The impact category climate change was found to have experienced the greatest increase from one year to the other, with a 31% increase. This work provides an overview of 14 environmental impact categories of the company assessed, as well as recommendations for the implementation of this indicator in companies and public procurement. This approach could pave the way to shape organizations’ action plans and meet the European environmental challenges.  相似文献   

14.
Industrial ecology (IE) methodologies, such as input/output or material flow analysis and life cycle assessment (LCA), are often used for the environmental evaluation of circular economy strategies. Up to now, an approach that utilizes these methods in a systematic, integrated framework for a holistic assessment of a geographic region's sustainable circular economy potential has been lacking. The approach developed in this study (IE4CE approach) combines IE methodologies to determine the environmental impact mitigation potential of circular economy strategies for a defined geographic region. The approach foresees five steps. First, input/output analysis helps identify sectors with high environmental impacts. Second, a refined analysis is conducted using material flow and LCA. In step 3, circular strategies are used for scenario design and evaluated in step 4. In step 5, the assessment results are compiled and compared across sectors. The approach was applied to a case study of Switzerland, analyzing 8 sectors and more than 30 scenarios in depth. Carbon capture and storage (CCS) from waste incineration, biogas and cement production, food waste prevention in households, hospitality and production, and the increased recycling of plastics had the highest mitigation potential. Most of the scenarios do not influence each other. One exception is the CCS scenarios: waste avoidance scenarios decrease the reduction potential of CCS. A combination of scenarios from different sectors, including their impact on the CCS scenario potential, led to an environmental impact mitigation potential of 11.9 Mt CO2-eq for 2050, which equals 14% of Switzerland's current consumption-based impacts.  相似文献   

15.
16.
With circular economy being high on governmental agendas, there is an increasing request from governing bodies for circularity measurements. Yet, currently existing macro-level monitoring frameworks are widely criticized for not being able to inform the decision-making. The criticism includes, among others, a lack of consensus on terminologies and definitions among scholars, politicians, and practitioners, a lack of supporting data and tools and, consequently, a lack of transparency and trustworthiness. To address those needs, a bottom-up approach to build a shared terminology is suggested as a starting point for monitoring development. The government, data providers, and tool developers are involved in the process of formal ontology development and alignment. The experiment builds upon a use case of the Amsterdam Circular Economy Monitor (2020). First, four ontology development approaches are used to create a theory-centered, a user-centered, a tool-centered, and a data-centered ontology. The ontologies are later compared, merged, and aligned to arrive at one single ontology which forms the basis of the circular economy monitor. The notes taken during the process have revealed that next to a material flow model, typical of socioeconomic metabolism analysis, policy makers are concerned with actors (i.e., institutions, companies, or groups of people) who participate in the analyzed processes and services. Furthermore, a number of terms used by the decision-makers lack clear definitions and references to be directly associated with the available data. Finally, a structured terminology alignment process between monitor users, developers, and data providers helps in exposing terminology conflicts and ambiguities.  相似文献   

17.
This paper discusses the transition toward a circular economy ecosystem (CEE) for plastics by assessing and mapping existing ecosystems and coordinating efforts among ecosystem actors. The PlastiCity ecosystem is used as a case study. The study employs ecosystem analysis and mapping to identify the new activities and actors needed to transition toward a CEE. These include local and eco-friendly transportation, plastic recycling knowledge management, and upgrading the existing recycling infrastructure. The findings emphasize the significance of the joint orchestration of ecosystem actors facilitated by an ecosystem coordinator and knowledge team to achieve a CEE. It presents a tangible and feasible approach to achieving a local plastic CEE. The policymakers are encouraged to support collaborative orchestration efforts among ecosystem actors and establish knowledge management practices that facilitate ecosystem transitions.  相似文献   

18.
In this article we test the long‐term dematerialization potential for Australia in terms of materials, energy, and water use as well as CO2 emissions by introducing concrete targets for major sectors. Major improvements in the construction and housing, transport and mobility, and food and nutrition sectors in the Australian economy, if coupled with significant reductions in the resource export sectors, would substantially improve the current material, energy, and emission intensive pattern of Australia's production and consumption system. Using the Australian Stocks and Flows Framework we model all system interactions to understand the contributions of large‐scale changes in technology, infrastructure, and lifestyle to decoupling the economy from the environment. The modeling shows a considerable reduction in natural resource use, while energy and water use decrease to a much lesser extent because a reduction in natural resource consumption creates a trade‐off in energy use. It also shows that trade and economic growth may continue, but at a reduced rate compared with a business‐as‐usual scenario. The findings of our modeling are discussed in light of the large body of literature on dematerialization, eco‐efficiency, and rebound effects that may occur when efficiency is increased. We argue that Australia cannot rely on incremental efficiency gains but has to undergo a sustainability transition to achieve a low carbon future to keep in line with the international effort to avoid climate change and resource use conflicts. We touch upon the institutional changes that would be required to guide a sustainability transition in the Australian economy, such as an emission trading scheme.  相似文献   

19.
Despite the promotion of plastic recycling to sustainably manage plastic waste and advance the circular economy, existing plastic recycling systems globally are largely experiencing low performance and growth. To transition to world-class plastic material recycling and circularity, defining the metrics that impact the performance of a plastic recycling system is crucial. Bringing together existing literature, this study developed a conceptual framework, comprised of eight key performance metrics, for benchmarking recycling success or assessing the degree to which the performance of any plastic recycling system is optimal. Through a value chain approach, the specific performance metrics relevant to each stage of the plastic recycling system, their objectives, and the actors characterizing the system were analyzed in detail. Also, specific maturity models were developed to measure the performance of any plastic recycling system. This framework provides essential knowledge for related stakeholders to inform further development of plastic recycling and a circular economy.  相似文献   

20.
Under the dual pressure of environmental constraints and increasingly thin profit margins, the cement industry in China is in a predicament. To alleviate the environmental and the economic pressure of the cement industry and to tackle the problem of delayed environmental infrastructure construction, this article introduced an urban ecosystem in which the cement industry was transformed into an effective complement to environmental infrastructure. The Xinfeng Cement Industrial Park in China, which has a production capacity of 5 million tonnes per annum (Mt/a) of clinker, was chosen as a case study. Our methodology involved proposing technologies to develop an efficient cement plant‐centered urban ecosystem; evaluating its environmental and economic performance; identifying barriers in its promotion; and proposing supportive policies. Results showed that the city's waste recycling ratio rose from about 50% to 70%, saving 0.6 Mt/a of coal equivalent and reducing about 3.0 Mt/a of resulting carbon dioxide (CO2) emissions. The life span of the city's landfill site was extended by about 30 years. The total investment was 3.2 billion yuan (about US$480 million), 1 with an average payback period of 3 years. The Xinfeng Cement Industrial Park was transformed from an energy‐intensive consumer and a significant CO2 emitter to a key industrial waste recycler, a crucial municipal waste co‐processor, an important new building material supplier, and a potential energy producer. Last, the “not‐in‐my‐back‐yard” (NIMBY) effect from constructing new environmental infrastructure was also avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号