首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that invasive (IN) species could capture resources more rapidly and efficiently than noninvasive (NIN) species. Two IN alien species, Ageratina adenophora and Chromolaena odorata, and one NIN alien species, Gynura sp. were compared at five irradiances. Photon-saturated photosynthetic rate (P max), leaf mass (LMA) and nitrogen content (NA) per unit area, and photosynthetic nitrogen utilization efficiency (PNUE) increased significantly with irradiance. LMA, NA, and PNUE all contributed to the increased P max, indicating that both morphological and physiological acclimation were important for the three alien species. Under stronger irradiance, PNUE was improved through changes in N allocation. With the increase of irradiance, the amount of N converted into carboxylation and bioenergetics increased, whereas that allocated to light-harvesting components decreased. The three alien species could adequately acclimate to high irradiance by increasing the ability to utilize and dissipate photon energy and decreasing the efficiency of photon capture. The two IN species survived at 4.5 % irradiance while the NIN species Gynura died, representing their different invasiveness. Ageratina generally exhibited higher respiration rate (R D) and NA. However, distinctly higher P max, PNUE, P max/R D, or P max/LMA were not detected in the two invasive species, nor was lower LMA. Hence the abilities to capture and utilize resources were not always associated with invasiveness of the alien species.  相似文献   

2.
Comparative studies of invasive, noninvasive alien, and native congenic plant species can identify plant traits that drive invasiveness. In particular, functional traits associated with rapid growth rate and high fecundity likely facilitate invasive success. As such traits often exhibit high phenotypic plasticity, characterizing plastic responses to anthropogenic environmental changes such as eutrophication and disturbance is important for predicting the invasive success of alien plant species in the future. Here, we compared trait expression and phenotypic plasticity at the species level among invasive, noninvasive alien, and native Bidens species. Plants were grown under nutrient addition and competition treatments, and their functional, morphological, and seed traits were examined. Invasive B. frondosa exhibited higher phenotypic plasticity in most measured traits than did the alien noninvasive B. pilosa or native B. bipinnata. However, differential plastic responses to environmental treatments rarely altered the rank of trait values among the three Bidens species, except for the number of inflorescences. The achene size of B. frondosa was larger, but its pappus length was shorter than that of B. pilosa. Two species demonstrated opposite plastic responses of pappus length to fertilization. These results suggest that the plasticity of functional traits does not significantly contribute to the invasive success of B. frondosa. The dispersal efficiency of B. frondosa is expected to be lower than that of B. pilosa, suggesting that long‐distance dispersal is likely not a critical factor in determining invasive success.  相似文献   

3.
4.
The margins of an expanding range are predicted to be challenging environments for adaptation. Marginal populations should often experience low effective population sizes (Ne) where genetic drift is high due to demographic expansion and/or census population size is low due to unfavourable environmental conditions. Nevertheless, invasive species demonstrate increasing evidence of rapid evolution and potential adaptation to novel environments encountered during colonization, calling into question whether significant reductions in Ne are realized during range expansions in nature. Here we report one of the first empirical tests of the joint effects of expansion dynamics and environment on effective population size variation during invasive range expansion. We estimate contemporary values of Ne using rates of linkage disequilibrium among genome‐wide markers within introduced populations of the highly invasive plant Centaurea solstitialis (yellow starthistle) in North America (California, USA), and within native Eurasian populations. As predicted, we find that Ne within the invaded range is positively correlated with both expansion history (time since founding) and habitat quality (abiotic climate). History and climate had independent additive effects with similar effect sizes, indicating an important role for both factors in this invasion. These results support theoretical expectations for the population genetics of range expansion, though whether these processes can ultimately arrest the spread of an invasive species remains an unanswered question.  相似文献   

5.
郭水良  于晶  李丹丹  周平  方其  印丽萍 《生态学报》2015,35(19):6516-6529
为了评估DNA C-值和基因组大小(genome size)在植物入侵性评估中的价值,应用流式细胞仪测定了长三角及邻近地区138种草本植物的核DNA含量,其中111种为首次报道。在此基础上比较了不同植物类群这两个值的差异,特别是入侵性与非入侵性植物这两个值的差异。结果表明:(1)138种草本植物平均DNA C-值为1.55 pg,最大者是最小者的37.17倍。127个类群平均基因组大小为1.08 pg,最大者是最小者的34.11倍;(2)统计了菊科(Asteraceae)、禾本科(Poaceae)、石竹科(Caryophyllaceae)、十字花科(Brassicaceae)、玄参科(Scrophulariaceae)、蓼科(Polygonaceae)、唇形科(Labiatae)和伞形科(Umbelliferae)的DNA C-值和基因组大小,发现禾本科植物的这两个值显著地大于其他7个科(P0.01)。单子叶的DNA C-值和基因组极显著地大于双子叶植物(P0.01);(3)杂草比非杂草具有更低的DNA C-值(P0.01)和基因组大小(P0.001);与DNA C-值相比,基因组大小在这两个类群之间的差异更为明显(P0.001),这种现象也体现在菊科植物中。随着基因组(X1)和DNA C-值(X2)由大变小,植物的杂草性(入侵性,Y)由弱变强,两者关系分别符合:Y=2.2334-1.2847 ln(X1)(r=0.4612,P0.01)和Y=2.4421-0.7234 ln(X2)(r=0.2522,P0.01),DNA C-值和基因组大小可以作为植物入侵性评估的一个指标;(4)多倍体杂草的基因组极明显地小于二倍体杂草(P0.01),前者为后者的0.63倍。在非杂草中,多倍体基因组比二倍体的略小,前者仅为后者的0.84倍,差异不显著(P0.5)。菊科植物中多倍体杂草的基因组也显著地小于二倍体杂草(P0.1)。基因组变小和多倍体化相结合,进一步增强了植物的入侵性。在多倍体植物入侵性评估中,基因组大小比DNA C-值更有价值。  相似文献   

6.
The monk parakeet (Myiopsitta monachus) is a successful invasive species that does not exhibit life history traits typically associated with colonizing species (e.g., high reproductive rate or long‐distance dispersal capacity). To investigate this apparent paradox, we examined individual and population genetic patterns of microsatellite loci at one native and two invasive sites. More specifically, we aimed at evaluating the role of propagule pressure, sexual monogamy and long‐distance dispersal in monk parakeet invasion success. Our results indicate little loss of genetic variation at invasive sites relative to the native site. We also found strong evidence for sexual monogamy from patterns of relatedness within sites, and no definite cases of extra‐pair paternity in either the native site sample or the examined invasive site. Taken together, these patterns directly and indirectly suggest that high propagule pressure has contributed to monk parakeet invasion success. In addition, we found evidence for frequent long‐distance dispersal at an invasive site (~100 km) that sharply contrasted with previous estimates of smaller dispersal distance made in the native range (~2 km), suggesting long‐range dispersal also contributes to the species’ spread within the United States. Overall, these results add to a growing body of literature pointing to the important role of propagule pressure in determining, and thus predicting, invasion success, especially for species whose life history traits are not typically associated with invasiveness.  相似文献   

7.
黄一鑫  程艳霞 《生态学报》2022,42(22):9121-9129
在林窗、林缘、林下3种自然光环境下,对吉林蛟河阔叶红松林常见树种拧筋槭、白牛槭、色木槭和红松的光合和光谱特性进行对比研究,以期从生理生态角度探讨它们对自然光环境的适应能力和响应机制。结果表明:4种乔木幼树叶片的光饱和点(LSP)和光补偿点(LCP)随着生长环境光强的下降而减小,林下各树种幼树LSP和LCP显著低于林窗内幼树(P<0.05);除白牛槭外林下其他树种最大净光合效率(Pnmax)均显著小于林窗内幼树(P<0.05);不同树种幼树表观量子效率(AQY)和暗呼吸速率(Rd)随光环境的变化并没有出现明显的变化规律,各环境间差异较小。除白牛槭外,其他树种幼树叶绿素归一化指数(Chl NDI)随环境光强的减少而增大,林下树种的光化学反射指数(PRI)普遍高于光条件更好环境下树种,说明林下幼树叶片叶绿素含量和光合速率大于其他光环境;各树种植物叶片水分指数(WI)在不同光环境之间存在显著差异,环境光强越大植物叶片WI越小,植物叶片水分浓度越小。林缘下3种槭属幼树结构不敏感植被光谱指数(SIPI)显著小于其他光环境(P<0.05)...  相似文献   

8.
Clonal plant species have been shown to adopt different strategies to persist in heterogeneous environments by changing relative investments in sexual reproduction and clonal propagation. As a result, clonal diversity and genetic variation may be different along environmental gradients. We examined the regional and local population structure of the clonal rhizomatous forest herb Paris quadrifolia in a complex of forest fragments in Voeren (Belgium). Relationships between population size (the number of shoots), shoot density (the number of shoots per m2) and local growth conditions were investigated for 47 populations. Clonal diversity and genetic variation within and among 19 populations were investigated using amplified fragment length polymorphism markers. To assess the importance of sexual reproduction, seed set, seed weight and germination success were determined in 18 populations. As predicted, local growth conditions largely affected population distribution, size and density of P. quadrifolia. Populations occurring in moist and relatively productive sites contained significantly more shoots. Here, shoots were also much more sparsely distributed compared to populations occurring in dry and relatively unproductive sites, where shoots showed a strongly aggregated distribution pattern. Clonal diversity was relatively high, compared with other clonal species (G/N ratio = 0.43 and Simpson’s D=0.81). Clonal diversity significantly (P<0.01) decreased with increasing shoot density while molecular genetic variation was significantly (P<0.01) affected by population size and local environmental conditions. Lack of recruitment and out-competition of less-adapted genotypes may explain the decreased genetic variation in dry sites. Analysis of molecular variance revealed significant genetic variation among populations (Φ ST=0.42, P<0.001), whereas pairwise genetic distances were not correlated to geographic distances, suggesting that gene flow among populations is limited. Finally, the number of generative shoots, the number of seeds per fruit and seed weight were significantly and positively related to population size and local growth conditions. We conclude that under stressful conditions populations of clonal forest plant species can slowly evolve into remnant populations characterized by low levels of genetic variation and limited sexual reproduction. Conservation of suitable habitat conditions is therefore a prerequisite for effective long-term conservation of clonal forest plant species.  相似文献   

9.
In this study, we hypothesized that invasive species may allocate a higher fraction of leaf nitrogen (N) to photosynthesis than phylogenetically related native species. To test this hypothesis, we determined N allocation and other ecophysiological traits of three invasive species in comparison with their respective native congeners by measuring response curves of photosynthesis to intercellular CO2 concentration. The invasive species of Peperomia and Piper indeed allocated a higher fraction of leaf N to photosynthesis and were more efficient in photosynthetic N (N P) partitioning than their native congeners. The two invasive species partitioned a higher fraction of N P to carboxylation and showed a higher use efficiency of N P, while their native congeners partitioned a higher fraction of N P to light-harvesting components. The higher N allocation to photosynthesis and the higher N P partitioning to carboxylation in the two invaders were associated with their higher specific leaf area. Nitrogen allocation and partitioning were the most important factors in explaining the differences in light-saturated photosynthetic rate and photosynthetic N use efficiency (PNUE) between the two invasive species and their native congeners. The differences in N allocation-related variables between the invasive and native species of Amaranthus could not be evaluated in this study due to the method. Except PNUE, resource capture- and use-related traits were not always higher in all three invasive species compared to their native congeners, indicating that different invasive species may have different syndrome of traits associated with its invasiveness.  相似文献   

10.
Genomewide markers enable us to study genetic differentiation within a species and the factors underlying it at a much higher resolution than before, which advances our understanding of adaptation in organisms. We investigated genomic divergence in Metrosideros polymorpha, a woody species that occupies a wide range of ecological habitats across the Hawaiian Islands and shows remarkable phenotypic variation. Using 1659 single nucleotide polymorphism (SNP) markers annotated with the genome assembly, we examined the population genetic structure and demographic history of nine populations across five elevations and two ages of substrates on Mauna Loa, the island of Hawaii. The nine populations were differentiated into two genetic clusters distributed on the lower and higher elevations and were largely admixed on the middle elevation. Demographic modelling revealed that the two genetic clusters have been maintained in the face of gene flow, and the effective population size of the high‐altitude cluster was much smaller. A FST‐based outlier search among the 1659 SNPs revealed that 34 SNPs (2.05%) were likely to be under divergent selection and the allele frequencies of 21 of them were associated with environmental changes along elevations, such as temperature and precipitation. This study shows a genomic mosaic of M. polymorpha, in which contrasting divergence patterns were found. While most genomic polymorphisms were shared among populations, a small fraction of the genome was significantly differentiated between populations in diverse environments and could be responsible for the dramatic adaptation to a wide range of environments.  相似文献   

11.
Genomic diversity is the evolutionary foundation for adaptation to environmental change and thus is essential to consider in conservation planning. Island species are ideal for investigating the evolutionary drivers of genomic diversity, in part because of the potential for biological replicates. Here, we use genome data from 180 individuals spread among 27 island populations from 17 avian species to study the effects of island area, body size, demographic history and conservation status on contemporary genomic diversity. Our study expands earlier work on a small number of neutral loci to the entire genome and from a few species to many. We find significant positive correlation between island size and genomic diversity, a significant negative correlation between body size and genomic diversity, and that historical population declines significantly reduced contemporary genomic diversity. Our study shows that island size is the key factor in determining genomic diversity, indicating that habitat conservation is key to maintaining adaptive potential in the face of global environmental change. We found that threatened species generally had a significantly smaller values of Watterson's theta (θW = 4Neμ) compared to nonthreatened species, suggesting that θW may be useful as a conservation indicator for at‐risk species. Overall, these findings (a) provide biological insights into how genomic diversity scales with ecological, morphological and demographic factors; and (b) illustrate how population genomic data can be leveraged to better inform conservation efforts.  相似文献   

12.
Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life‐history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species‐level life‐history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei's GST, Hedrick's GST, and Jost's D. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick's GST and Jost's D, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes.  相似文献   

13.
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype–environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat‐shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental‐induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.  相似文献   

14.
Hosts provide the main environmental traits parasites have to deal with, resulting in covariation between both associates at both micro- and macro-evolutionary scales; phylogenetic analyses of highly host-specific parasites have shown that parasite and host phylogeny might be highly congruent, and adaptation of a host species to new environments may lead to concordant changes of their parasites. Procamallanus (Spirocamallanus) neocaballeroi is a highly host-specific parasitic nematode of the Neotropical freshwater fish genus Astyanax in Mexico. One of the host species of the nematode is the emblematic Mexican tetra, A. mexicanus, which exhibits two contrasting phenotypes, a cave-dwelling morph (with troglomorphic features), and the surface-dwelling morph; other congeneric species inhabit rivers and lakes, and some of them occur in sympatry, displaying trophic specializations. Here, we explored the hypothesis that contrasting environments (surface rivers vs cave rivers), and host morphological divergence (sympatric ecomorphs in a lacustrine environment) might result in the divergence of their parasites, even though the hosts maintain a cohesive genetic structure as the same species. To test the hypothesis, several populations of Astyanax spp. were sampled to search for P. (S.) neocaballeroi. The nematode was found in 10 of the 52 sampled sites; two localities corresponded to cave populations. The phylogenetic analysis based on COI sequences yielded three major lineages for P. (S.) neocaballeroi. We found no concordance between the three lineages and the habitat where they occur in Astyanax mexicanus, even considering those living in drastic environmental conditions (caves), or between these lineages and lacustrine ecomorphs of Astyanax aeneus and A. caballeroi occurring in sympatry. Instead, genetic lineages of the nematode exhibit a clearer pattern of host species association and geographical distribution; our results showed that P. (S.) neocaballeroi is experiencing an incipient divergence although the morphological study of lineages shows no conspicuous differences.  相似文献   

15.
Aim Describing the landscape variables that accurately reflect how environmental and topographic variations affect population connectivity and demography is a major goal of landscape genetics and conservation biology. However, few landscape genetics studies have quantified the relationships between landscape variables and effective population size (Ne), although Ne is a key conservation and population genetics parameter. In this study, I estimated genetic structure and effective population sizes in the Yosemite toad (Bufo canorus) and tested for associations with environmental and geographic variables. Location Yosemite National Park, California, USA. Methods I estimated FST, Dps and Ne using 10 microsatellite loci amplified from 781 individuals from 24 populations. I used three landscape variables (environmental variation, topography and slope) to generate geographic distance models and a series of regression analyses to identify the variables that contributed to genetic structure in this species. I also tested for correlations between Ne and a suite of variables, including geographic and genetic isolation, habitat suitability, elevation, temperature and precipitation. Results I found substantial variation in genetic distances between populations (FST = 0.004–0.396, Dps = 0.045–0.839) and in effective population sizes (Ne = 9–52). Environmental variation and slope played important roles in explaining variation in genetic distances, and precipitation variables were significantly correlated with Ne. Main conclusions These results show that environmental and topographic variables are both important for understanding population connectivity in B. canorus and provide some of the first evidence, in any species, for a link between environmental variables and effective population size.  相似文献   

16.
The area under the function: an index for selecting desirable genotypes   总被引:1,自引:0,他引:1  
The linear regression approach has been widely used for selecting high-yielding and stable genotypes targeted to several environments. The genotype mean yield and the regression coefficient of a genotype's performance on an index of environmental productivity are the two main stability parameters. Using both can often complicate the breeder's decision when comparing high-yielding, less-stable genotypes with low-yielding, stable genotypes. This study proposes to combine the mean yield and regression coefficient into a unified desirability index (D i). Thus, D i is defined as the area under the linear regression function divided by the difference between the two extreme environmental indexes. D i is equal to the mean of the i th genotype across all environments plus its slope multiplied by the mean of the environmental indexes of the two extreme environments (symmetry). Desirable genotypes are those with a large D i. For symmetric trials the desirability index depends largely on the mean yield of the genotype and for asymmetric trials the slope has an important influence on the desirability index. The use of D i was illustrated by a 20-environments maize yield trial and a 25-environments wheat yield trial. Three maize genotypes out of nine showed values of D i 's that were significantly larger than a hypothetical, stable genotype. These were considered desirable, even though two of them had slopes significantly greater than 1.0. The results obtained from ranking wheat genotypes on mean yield differ from a ranking based on D i .  相似文献   

17.
Using allozyme analysis, genetic and genotypic variation of rare relict species, a member of one of ancient angiosperm families, Araliaceae, the clonal plant Oplopanax elatus (Nakai) Nakai, was evaluated. Electrophoretic separation of the enzymes is described, and genetic interpretation of the enzymes variation patterns is presented. The values of genetic variation indices obtained were low (P = 25%; A = 1.45: H o = 0.131; H e = 0.113) and comparable with the data reported for the rare plant species and the representatives of the family Araliaceae. The main factors responsible for the polymorphism level observed might be the evolutionary history of the species and gene drift. The level of genotypic diversity (G/N = 0.76; D = 0.97) was substantially higher, compared to the values reported for species with vegetative reproduction (D = 0.62). These results suggest certain contribution of the propagation by seeds in the formation of the species of interest.  相似文献   

18.
Aim The rate of grassland invasion by trees depends on the ability of the species to invade, i.e. their invasiveness, and on the susceptibility of the environments to invasion, i.e. their invasibility. Knowledge of the invasiveness of native and introduced tree species and of the environmental factors that contribute to invasibility is necessary to understand landscape evolution and assess required management measures. Our main aim was to explore this by estimating the separate effects of propagule pressure and environmental factors on the spatio‐temporal patterns of sapling recruitment, a key stage in the tree life cycle. Location Causse Mejean calcareous plateau (southern France). Methods The effects of seed supply and environmental variables (grazing, geological substrate, and duration or intensity of drought) on the spatio‐temporal patterns of sapling recruitment were assessed for the native Scots pine (Pinus sylvestris L.) and the introduced black pine (Pinus nigra Arn. ssp. nigra). Estimates were derived by inverse modelling with data of locations and ages of 4‐ to 20‐year‐old saplings and seed‐bearing trees in 32 sites. Yearly indices of drought were derived from a soil–water content model. Results For both species, seed supply was as important as the whole set of environmental factors in explaining sapling recruitment rates. Grazing and the duration of drought from July to August decreased sapling recruitment rates, which were also lower on hard limestone than on dolomite. Dispersal distances and effective fecundities were higher for the introduced P. nigra, which was less susceptible to drought but more affected by grazing than the native P. sylvestris. In grazed grasslands, shrubs facilitated sapling establishment of both species. Main conclusions This study shows how seed supply and environmental factors shape spatio‐temporal patterns of sapling recruitment for trees invading grasslands. Implications for landscape evolution and management, of the difference in invasiveness of the two pine species and of the hierarchy of environmental factors in determining invasibility, are discussed.  相似文献   

19.
Many invasive plant species are able to establish within a wide range of community types. This establishment success depends on high propagule pressure and successful recruitment of seedlings following propagule dispersal into receptive environments. This study aimed to investigate interactions between propagule pressure and environmental resistance to seedling recruitment of the invasive shrub, glossy buckthorn (Frangula alnus Mill.), over a range of wetland habitat types. We measured propagule deposition using seed traps and recruitment success using sown plots, while characterizing vegetation and abiotic environmental conditions in five adjacent wetland habitat types. Drier habitats, which included Cedar Swamp, Shrub Carr, and String, had lower resistance to buckthorn establishment than the wetter Flark and Cattail Marsh. The drier habitats supported more woody species and provided more raised hummock surfaces essential for successful buckthorn recruitment and establishment. Propagule pressure was also higher in dry habitats that supported higher densities of adult glossy buckthorn, while long-distance dispersal into areas with low adult density was uncommon. Natural recruitment was highest in sites with intense propagule pressure, but experimental sowing of seeds demonstrated that buckthorn establishes in wet sites with higher resistance if propagule pressure is increased and seeds are deposited on hummocks. This study demonstrates the affinity of glossy buckthorn for drier wetland sites, and provides empirical evidence that environmental resistance can be overcome by higher propagule pressure.  相似文献   

20.
Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring‐necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring‐necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号