首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world-wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes.  相似文献   

2.
Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep‐sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free‐living and particle‐attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid‐like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200–1,000 m) communities, suggesting a direct connectivity through fast‐sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep‐sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.  相似文献   

3.
The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments but their global diversity and biogeography remain poorly characterized. Here, we analyzed AAP communities across 113 globally-distributed surface ocean stations sampled during the Malaspina Expedition in the tropical and subtropical ocean. By means of amplicon sequencing of the pufM gene, a genetic marker for this functional group, we show that AAP communities along the surface ocean were mainly composed of members of the Halieaceae (Gammaproteobacteria), which were adapted to a large range of environmental conditions, and of different clades of the Alphaproteobacteria, which seemed to dominate under particular circumstances, such as in the oligotrophic gyres. AAP taxa were spatially structured within each of the studied oceans, with communities from adjacent stations sharing more taxonomic similarities. AAP communities were composed of a large pool of rare members and several habitat specialists. When compared to the surface ocean prokaryotic and picoeukaryotic communities, it appears that AAP communities display an idiosyncratic global biogeographical pattern, dominated by selection processes and less influenced by dispersal limitation. Our study contributes to the understanding of how AAP communities are distributed in the horizontal dimension and the mechanisms underlying their distribution across the global surface ocean.  相似文献   

4.
Global patterns in the biogeography of bacterial taxa   总被引:3,自引:0,他引:3  
Bacteria control major nutrient cycles and directly influence plant, animal and human health. However, we know relatively little about the forces shaping their large-scale ecological ranges. Here, we reveal patterns in the distribution of individual bacterial taxa at multiple levels of phylogenetic resolution within and between Earth's major habitat types. Our analyses suggest that while macro-scale habitats structure bacterial distribution to some degree, abundant bacteria (i.e. detectable using 16S rRNA gene sequencing methods) are confined to single assemblages. Additionally, we show that the most cosmopolitan taxa are also the most abundant in individual assemblages. These results add to the growing body of data that support that the diversity of the overall bacterial metagenome is tremendous. The mechanisms governing microbial distribution remain poorly understood, but our analyses provide a framework with which to test the importance of macro-ecological environmental gradients, relative abundance, neutral processes and the ecological strategies of individual taxa in structuring microbial communities.  相似文献   

5.
Ciliates are globally distributed eukaryotic organisms inhabiting virtually all environments on Earth. Although ciliates range from 10 µm to a few millimetres in cell size, they are repeatedly reported in the pico‐sized fraction (<2–3 µm) of molecular surveys. Here, we used existing data sets (BioMarKs and Tara Oceans) with different size fractions to demonstrate that the ciliate pico‐sized signal, probably derived from cell breakage during filtration, is informative and reliable to study marine ciliate biodiversity and biogeography. We then used sequences from the pico‐eukaryotic fraction of two circumnavigation expeditions, Malaspina‐2010 and Tara Oceans, to give insights into the taxonomic composition and horizontal and vertical distribution of ciliates in the global ocean. The results suggested a high homogeneity of ciliate communities along the ocean surface from temperate to tropical waters, with ciliate assemblages dominated by a few abundant and widely distributed taxa. Very few taxa were found in a single oceanic region, therefore suggesting a high level of ciliate cosmopolitanism in the global ocean. In vertical profiles, ciliates were detected up to 4,000 m depth, and a clear vertical community structuring was observed. Our results provided evidence supporting ciliates as deeply integrated organisms in the deep‐sea trophic web, where they may play a relevant role as symbionts of metazoans and grazers of prokaryotes and small eukaryotes in the water column and in aggregates.  相似文献   

6.
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean''s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.  相似文献   

7.
In this work, they compared patterns of abundant and rare picoeukaryotic sub‐communities in the epipelagic waters (surface and 40–75 m depth subsurface layers) of the East and South China Seas across seasons via 454 pyrosequencing of the V4 region of 18S rDNA. They also examined the relative effects of environmental filtering, dispersal limitations and seasonality on community assembly. Their results indicated that (i) in the surface layer, abundant taxa are primarily influenced by dispersal limitations and rare taxa are primarily influenced by environmental filtering, whereas (ii) in the subsurface layer, both abundant and rare sub‐communities are only weakly influenced by environmental filtering but are strongly influenced by dispersal limitations. Moreover, (iii) abundant taxa exhibit stronger temporal variability than rare taxa. They also found that abundant and rare sub‐communities display similar spatial richness patterns that are negatively correlated with latitude and chlorophyll a and positively correlated with temperature. In summary, environmental filtering and dispersal limitations have different effects on abundant and rare picoeukaryotic sub‐communities in different layers. Thus, depth appears as an essential variable that governs the structuring patterns of picoeukaryotic communities in the oceans and should be thoroughly considered to develop a more comprehensive understanding of oceanic microbial assemblages.  相似文献   

8.
The early late Cretaceous (Cenomanian–early Turonian) is thought to have been one of the warmest periods of the Phanerozoic. This period was characterised by tropical sea surface temperatures of up to 36 °C and a pole-to-equator-gradient of less than 10 °C. The subsequent Turonian–Maastrichtian was characterised by a continuous climatic cooling, peaking in the Maastrichtian. This climatic cooling and the resulting palaeoceanographic changes had an impact on planktic primary producer communities including calcareous nannofossils. In order to gain a better understanding of these Cenomanian–Maastrichtian palaeoceanographic changes, calcareous nannofossils have been studied from the proto North Atlantic (Goban Spur, DSDP Sites 549, 551). In order to see potential differences between open oceanic and shelf dwelling nannofossils, the data from Goban Spur have been compared to findings from the European shelf (northern Germany).A total of 77 samples from Goban Spur were studied for calcareous nannofossils revealing abundant (mean 6.2 billion specimens/g sediment) and highly diverse (mean 63 species/sample) nannofossil assemblages. The dominant taxa are Watznaueria spp. (mean 30.7%), Prediscosphaera spp. (mean 18.3%), Zeugrhabdotus spp. (mean 8.3%), Retecapsa spp. (mean 7.2%) and Biscutum spp. (mean 6.6%). The Cenomanian assemblages of both Goban Spur (open ocean) and Wunstorf (shelf) are characterised by elevated abundances of high fertility taxa like Biscutum spp., Zeugrhabdotus spp. and Tranolithus orionatus. Early Turonian to Maastrichtian calcareous nannofossil assemblages of Goban Spur are, however, quite different to those described from European sections. Oceanic taxa like Watznaueria spp., Retecapsa spp. and Cribrosphearella ehrenbergii dominate in Goban Spur whereas the fertility indicators Biscutum spp. and T. orionatus are more abundant in the European shelf assemblages. This shift from a homogeneous distribution of calcareous nannofossils in the Cenomanian towards a heterogeneous one in the Turonian–Maastrichtian implies a change of the ocean circulation. The “eddy ocean” system of the Cenomanian was replaced by an oceanic circulation similar to the modern one in the Turonian–Maastrichtian, caused by the cooling. The increased pole-to-equator-gradients resulted in an oceanic circulation similar to the modern one.  相似文献   

9.
Several species of ecosystem engineers inhabiting coastal environments have been reported structuring different kinds of communities. The magnitude of this influence often depends on the habitat complexity introduced by the engineers. It is commonly accepted that an increase in habitat complexity will result in an increase in diversity and/or abundance in the associated fauna. The rocky salt marshes along the coast of Patagonia are dominated by cordgrasses, mussels, and barnacles forming a mosaic of engineered habitats with different complexity. This system allows us to address the following questions: how different is a macroinvertebrate assemblage when dominated by different ecosystem engineers? And, is there a positive relationship between increasing habitat complexity and the species richness, diversity and total density of the assemblages? To address these questions, we compared the three ecological scenarios with decreasing habitat complexity: cordgrass–mussel, mussel, and barnacle-engineered habitats. We found a total of 22 taxa mostly crustaceans and polychaetes common to all scenarios. The three engineered habitats showed different macroinvertebrate assemblages, mainly due to differences in individual abundances of some taxa. The cryptogenic amphipod Orchestia gammarella was found strictly associated with the cordgrass–mussel habitat. Species richness and diversity were positively related with habitat complexity while total density showed the opposite trend. Our study suggests that species vary their relative distribution and abundances in response to different habitat complexity. Nevertheless, the direction (i.e., neutral, positive or negative) and intensity of the community’s response seem to depend on the physiological requirements of the different species and their efficiency to readjust their local spatial distribution in the short term.  相似文献   

10.
Marine Archaea are crucial in biogeochemical cycles, but their horizontal spatial variability, assembly processes, and microbial associations across complex coastal waters still lack characterizations at high coverage. Using a dense sampling strategy, we investigated horizontal variability in total archaeal, Thaumarchaeota Marine Group (MG) I, and Euryarchaeota MGII communities and associations of MGI/MGII with other microbes in surface waters with contrasting environmental characteristics across ~200 km by 16S rRNA gene amplicon sequencing. Total archaeal communities were extremely dominated by MGI and/or MGII (98.9% in average relative abundance). Niche partitioning between MGI and MGII or within each group was found across multiple environmental gradients. “Selection” was more important than “dispersal limitation” in governing biogeographic patterns of total archaeal, MGI, and MGII communities, and basic abiotic parameters (such as salinity) and inorganic/organic resources as a whole could be the main driver of “selection”. While “homogenizing dispersal” also considerably governed their biogeography. MGI‐Nitrospira assemblages were speculatively responsible for complete nitrification. MGI taxa commonly had negative correlations with members of Synechococcus but positive correlations with members of eukaryotic phytoplankton, suggesting that competition or synergy between MGI and phytoplankton depends on specific MGI‐phytoplankton assemblages. MGII taxa showed common associations with presumed (photo)heterotrophs including members of SAR11, SAR86, SAR406, and Candidatus Actinomarina. This study sheds light on ecological processes and drivers shaping archaeal biogeography and many strong MGI/MGII‐bacterial associations across complex subtropical coastal waters. Future efforts should be made on seasonality of archaeal biogeography and biological, environmental, or ecological mechanisms underlying these statistical microbial associations.  相似文献   

11.
12.
Little is known about the potential activity of microbial communities in hypersaline sediment ecosystems. Ribosomal tag libraries of DNA and RNA extracted from the sediment of Lake Strawbridge (Western Australia) revealed bacterial and archaeal operational taxonomic units (OTUs) with high RNA/DNA ratios providing evidence for the presence of ‘rare’ but potentially “active” taxa. Among the ‘rare’ bacterial taxa Halomonas, Salinivibrio and Idiomarina showed the highest protein synthesis potential. Rare but ‘active’ archaeal OTUs were related to the KTK 4A cluster and the Marine-Benthic-Groups B and D. We present the first molecular analysis of the microbial diversity and protein synthesis potential of rare microbial taxa in a hypersaline sediment ecosystem.  相似文献   

13.
Freshwater ecosystems have been fragmented by the construction of large numbers of dams. In addition to disruption of ecological continuity and physical disturbance downstream, accumulation of large amounts of sediment within run-of-river reservoirs constitutes a latent ecotoxic risk to aquatic communities. To date, run-of-river reservoirs and ecotoxic risks associated with contaminated sediment to the biodiversity and functioning of such systems are little studied. Therefore, the main objective of this study was to describe macroinvertebrate assemblages, and the functioning of these systems, and to propose indicators of sediment contamination to integrate in in-situ risk assessment methodology. To identify specific assemblages of run-of-river reservoirs, we first compared macroinvertebrate assemblages and their biotrait profiles (i.e. from a database of biological and ecological traits) in reservoirs (n = 6) and associated river sites (upstream and downstream of dams). Then, we compared responses of assemblages and biotrait profiles to sediment contamination of the banks and channels of reservoirs to select the most useful spatial scale to identify sediment contamination. Nineteen indicator taxa were observed to be specifically associated with channel habitats of reservoirs. Among these, the abundance of three taxa (Tanypodinae (Diptera), Ephemerella (Ephemeroptera) and Atherix (Diptera)) revealed the effect of metal sediment contamination. “Between-reservoirs” differences in their biotrait profile were found along the contamination gradient, with a shift of communities’ composition and functionality, and an increase in functional similarity. Many traits (response traits), for example “maximum size”, “transverse distribution”, “substrate preferences”, “saprobity”, “temperature”, “resistance forms”, and “locomotion”, were specifically linked to contamination of sediments by metals. This study indicates how sediment contamination can change the structural and functional composition of run-of-river reservoir assemblages. Indicator taxa and response traits identified in this study could improve current risk assessment methodology and potentially enable prediction of the risks of contaminated sediments stored in reservoirs in downstream ecosystems.  相似文献   

14.
The moss dwelling testacean fauna of Île de la Possession   总被引:3,自引:0,他引:3  
An ecological study of the moss dwelling testacean fauna (Protozoa, Rhizopoda) on Île de la Possession (Crozet Archipelago, sub-Antarctica) revealed 83 taxa, belonging to 21 genera. The moss flora was dominated by cosmopolitan and ubiquitous taxa, such as Trinema lineare, T. enchelys, Euglypha laevis and E. rotunda. A cluster analysis and a correspondence analysis identified three communities: (1) a Corythion dubium assemblage found in a drier, slightly acidic terrestrial moss vegetation, (2) the Arcella arenaria, and (3) the Difflugiella crenulata assemblages, both characteristic of wetter, circumneutral habitats. The latter typified submerged mosses growing in running water, while the A. arenaria assemblage seemed to prefer mosses in standing waterbodies. Moisture conditions appeared to play a key role in determining the distribution pattern of testacean communities, while pH was only a secondary factor. A logistic regression emphasised the effect of the habitat type in controlling the variance in testacean assemblages. Moreover, the close relationship between bryophyte species and habitat type had a significant influence on the distribution pattern of the testate amoebae. Weighted averaging and calibration were used to estimate moisture optima and tolerances of the testate amoebae.  相似文献   

15.
Carbon and oxygen isotopic analyses from upper Palaeogene molluscs collected in the Hampshire Basin (S. England) show that, in addition to long‐term trends in the data caused by climatic change, there is variation within samples collected from any one horizon. This variation is not attributable to diagenesis or other “noise”;. Linear trends in data from the meso‐ and oligohaline organisms are salinity‐dependent, as is a differentiation into clusters of the marine and brackish water animals. Within the marine organisms there is further distinction between taxa, controlled by micro‐environment. This is quite distinct from disequilibrium precipitation, as shell growth occurs in equilibrium with local isotopic ratios, though this may not necessarily be the same as contemporary mean ocean values. This “ecological fractionation”; can seriously affect the isotopic signal from a suite of fossils. Its existence should therefore be borne in mind when interpreting any biogenic isotope data from diverse taxa, localities, or micro‐habitats.  相似文献   

16.
Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high‐throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored.  相似文献   

17.
Trebouxiophyceae are a ubiquitous class of Chlorophyta encountered in aquatic and terrestrial environments. Most taxa are photosynthetic, and many acts as photobionts in symbiotic relationships, while others are free-living. Trebouxiophyceae have also been widely investigated for their use for biotechnological applications. In this work, we aimed at obtaining a comprehensive image of their diversity by compiling the information of 435 freshwater, soil and marine environmental DNA samples surveyed with Illumina sequencing technology in order to search for the most relevant environments for bioprospecting. Freshwater and soil were most diverse and shared more than half of all operational taxonomic units (OTUs), however, their communities were significantly distinct. Oceans hosted the highest genetic novelty, and did not share any OTUs with the other environments; also, marine samples host more diversity in warm waters. Symbiotic genera usually found in lichens such as Trebouxia, Myrmecia and Symbiochloris were also abundantly detected in the ocean, suggesting either free-living lifestyles or unknown symbiotic relationships with marine planktonic organisms. Altogether, our study opens the way to new prospection for trebouxiophycean strains, especially in understudied environments like the ocean.  相似文献   

18.
Abstract Understanding the ecological role of artificial structures, such as seawalls, in shallow coastal waters is necessary in order to plan sound strategies of conservation and management of natural habitats. In Sydney Harbour (NSW, Australia), about 50% of the foreshore is made of retaining seawalls This study evaluates the changes caused to natural assemblages of organisms by these structures, by comparing intertidal assemblages between seawalls and vertical rocky shores. The following hypotheses were tested: that assemblages on seawalls would differ from those on rocky shores at mid‐, but not at low‐shore levels; where assemblages differ between habitats, there would be differences in cover/abundances of widespread species; patterns would be consistent among locations and through time; the variability of assemblages at the scales of 10s of cm and metres would differ between seawalls and rocky shores at mid‐ and low‐shore levels. To test these hypotheses, assemblages on seawalls and rocky shores were sampled at three locations, at roughly 4‐monthly intervals, over a period of about 18 months. Results indicated that mid‐shore assemblages on seawalls were different from those on rocky shores, but this was not the case at low‐shore levels. Few taxa were unique to either habitat. Cover of common species of algae and sessile animals and abundances of mobile grazers were variable with few consistent patterns. Variability at the scales sampled differed between habitats and heights on the shore. Seawalls and rocky shores, in general, supported a similar suite of species, but patterns of abundance and variation differed among locations and from height to height in each habitat. The implications of these findings for the future management of seawalls are briefly considered.  相似文献   

19.
20.
A year-long study of a second-order stream in Southwestern Virginia was carried out from 1979–80. One of the objectives of the study was to evaluate the effects of sewage and electroplating plant effluent stress on the trophic response of aquatic invertebrate assemblages and microbial communities in the stream. Quantitative benthic samples were collected periodically at three reference stations and four stressed stations below the outfalls. Invertebrates were counted, identified taxonomically, and classified into functional groups based on their feeding strategies. Ash-free dry weights were obtained for each functional group by date and station, and the number and density of different taxa were calculated as well. Reference stations had diverse invertebrate assemblages; scrapers were well represented and all functional groups were present in reasonably equivalent proportions. Stressed stations were dominated by collector gatherers and filterers to the virtual exclusion of scrapers. The trophic status of the microbial community was determined by suspending artificial substrates in the stream for 1-week periods. The community that colonized the substrates was assayed for ATP and chlorophyll a, and an autotrophy index (AI) was calculated using these values. The autotrophic component of the microbial community was greatest at the reference stations, and the community became primarily heterotrophic below the outfalls. The AI correlated well with the proportion of scrapers. Aquatic invertebrate assemblages and microbial communities responded to stress by changing their trophic structure to fit best the available energy sources. Where heterotrophic microbes dominated, gathering and filtering invertebrates utilized the abundant organic matter. In areas where a mainly autotrophic microbial community existed, scrapers, gatherers, and filterers were all present in balanced proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号