首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emerging evidence has reported that dysregulation of microRNAs (miRNAs) participated in the development of diverse types of cancers. Our initial microarray‐based analysis identified differentially expressed NEK2 related to breast cancer and predicted the regulatory microRNA‐128‐3p (miR‐128‐3p). Herein, this study aimed to characterize the tumour‐suppressive role of miR‐128‐3p in regulating the biological characteristics of breast cancer stem cells (BCSCs). CD44CD24?/low cells were selected for subsequent experiments. After verification of the target relationship between miR‐128‐3p and NEK2, the relationship among miR‐128‐3p, NEK2 and BCSCs was further investigated with the involvement of the Wnt signalling pathway. The regulatory effects of miR‐128‐3p on proliferation, migration, invasion and self‐renewal in vitro as well as tumorigenicity in vivo of BCSCs were examined via gain‐ and loss‐of‐function approaches. Highly expressed NEK2 was found in breast cancer based on GSE61304 expression profile. Breast cancer stem cells and breast cancer cells showed a down‐regulation of miR‐128‐3p. Overexpression of miR‐128‐3p was found to inhibit proliferation, migration, invasion, self‐renewal in vitro and tumorigenicity in vivo of BCSCs, which was further validated to be achieved through inhibition of Wnt signalling pathway by down‐regulating NEK2. In summary, this study indicates that miR‐128‐3p inhibits the stem‐like cell features of BCSCs via inhibition of the Wnt signalling pathway by down‐regulating NEK2, which provides a new target for breast cancer treatment.  相似文献   

2.
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.  相似文献   

3.
4.
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24? phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24? phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.  相似文献   

5.
Several evidences support the idea that a small population of tumour cells representing self‐renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self‐renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF‐7, MDA‐MB231, and MDA‐MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation potential, with increasing in stemness‐ and EMT‐related genes expression. Our results determined that miR‐204, ‐200c, ‐34a, and ‐10b contemporarily could target both self‐renewal and EMT pathways. This core regulatory of miRNAs could increase the survival rate of breast invasive carcinoma via up‐regulation of OCT4, SOX2, KLF4, c‐MYC, NOTCH1, SNAI1, ZEB1, and CDH2 and down‐regulation of CDH1. The majority of those target genes were involved in the regulation of pluripotency, MAPK, WNT, Hedgehog, p53, and transforming growth factor β pathways. Hence, this study provides novel insights for targeting core regulatory of miRNAs in breast CSCs to target both self‐renewal and metastasis potential and eradication of breast cancer.  相似文献   

6.
Drug resistance occurs commonly in cancers, especially in hepatocellular carcinoma (HCC). Accumulating evidence has demonstrated that microRNAs (miRNAs) play a vital role in tumour chemoresistance. However, little is known about the role of miR‐383 in HCC chemoresistance. In the present study, RT‐PCR and western blotting were used to identify the expression profile of miR‐383 and eukaryotic translation initiation factor 5A2 (EIF5A2). The bioinformatics website Targetscan was used to predict the target genes of miR‐383. In vitro and in vivo loss‐ and gain‐of‐function studies were performed to reveal the effects and potential mechanism of the miR‐383/EIF5A2 axis in chemoresistance of HCC cells. The expression level of miR‐383 correlated negatively with doxorubicin (Dox) sensitivity. Overexpression of miR‐383 promoted HCC cells to undergo Dox‐induced cytotoxicity and apoptosis, whereas miR‐383 knockdown had the opposite effects. EIF5A2 was predicted as a target gene of miR‐383. EIF5A2 knockdown sensitized HCC cells to Dox. Moreover, miR‐383 inhibition‐mediated HCC Dox resistance could be reversed by silencing EIF5A2. Finally, we demonstrated that miR‐383 inhibition could enhance Dox sensitivity by targeting EIF5A2 in vivo. The results indicated that miR‐383 inhibited Dox resistance in HCC cells by targeting EIF5A2. Targeting the miR‐383/EIF5A2 axis might help to alleviate the chemoresistance of HCC cells.  相似文献   

7.
8.
Although relatively good therapeutic results are achieved in non‐advanced cancer, the prognosis of the advanced colon cancer still remains poor, dependent on local or distant recurrence of the disease. One of the factors responsible for recurrence is supposed to be cancer stem cells (CSCs) or tumor‐initiating cells, which are a population of cancer cells with ability to perpetuate themselves through self‐renewal and to generate differentiated cells, thought to be responsible for tumor recurrence. This study globally approach the possible role of tissue‐derived stem cells in the initiation of colon cancer and its metastatic process in the liver. Fresh surgical specimens from colon cancer, non‐tumor tissue and liver metastasis were obtained directly from the operating room, examined, and immediately processed. CSCs were selected under serum‐free conditions and characterized by CD44 and CD133 expression levels. CD133+/CD44+ cell populations were then investigated in paraffin‐embedded tissues and circulating tumor cells isolated from peripheral blood of the same group of colon cancer patients. Our data demonstrate that metastatic properties of cell populations from blood and liver metastasis, differently from primitive tumors, seem to be strictly related to the phenotype CD133 positive and CD44 positive. J. Cell. Physiol. 228: 408–415, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Evidences have suggested that CD133 is a marker for a subset of glioblastoma cancer stem cells. However, whether miRNA plays a critical role in CD133+ GBM is poorly understood. Here, we identified that miR‐154 was upregulated in CD133+ GBM cell lines. Knockdown of miR‐154 remarkably suppressed proliferation and migration of CD133+ GBM cells. Further study found that PRPS1 was a direct target of miR‐154 in CD133+ GBM cells. Overexpression of PRPS1 exhibited similar effects as miR‐154 knockdown in CD133+ GBMs. Our study identified miR‐154 as a previously unrecognized positive regulator of proliferation and migration in CD133+ GBM cells and a potentially therapeutic target of GBMs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Cancer stem cells (CSCs) are linked to metastasis. Moreover, a discrete group of miRNAs (metastamiRs) has been shown to promote metastasis. Accordingly, we propose that miRNAs that function as metastatic promoters may influence the CSC phenotype. To study this issue, we compared the expression of 353 miRNAs in CSCs enriched from breast cancer cell lines using qRT–PCR analysis. One of the most altered miRNAs was miR‐10b, which is a reported promoter of metastasis and migration. Stable overexpression of miR‐10b in MCF‐7 cells (miR‐10b‐OE cells) promoted higher self‐renewal and expression of stemness and epithelial–mesenchymal transition (EMT) markers. In agreement with these results, inhibiting miR‐10b expression using synthetic antisense RNAs resulted in a decrease in CSCs self‐renewal. Bioinformatics analyses identified several potential miR‐10b mRNA targets, including phosphatase and tensin homolog (PTEN), a key regulator of the PI3K/AKT pathway involved in metastasis, cell survival, and self‐renewal. The targeting of PTEN by miR‐10b was confirmed using a luciferase reporter, qRT–PCR, and Western blot analyses. Lower PTEN levels were observed in CSCs, and miR‐10b depletion not only increased PTEN mRNA and protein expression but also decreased the activity of AKT, a downstream PTEN target kinase. Correspondingly, PTEN knockdown increased stem cell markers, whereas AKT inhibitors compromised the self‐renewal ability of CSCs and breast cancer cell lines overexpressing miR‐10b. In conclusion, miR‐10b regulates the self‐renewal of the breast CSC phenotype by inhibiting PTEN and maintaining AKT pathway activation.  相似文献   

11.
More and more studies indicate the relevance of miRNAs in inducing certain drug resistance. Our study aimed to investigate whether microRNA‐130b‐3p (miR‐130b) mediates the chemoresistance as well as proliferation of lung cancer (LC) cells. MTS assay and apoptosis analysis were conducted to determine cell proliferation and apoptosis, respectively. Binding sites were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes was determined by RT‐PCR and immunoblot, respectively. Mouse xenograft model was used to evaluate the role of miR‐130b in cisplatin resistance in vivo. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR ) versus its parental cell lines, indicated its crucial relevance for LC biology. We identified PTEN as miR‐130b's major target and inversely correlated with miR‐130b expression in LC. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. Suppression of miR‐130b enhanced drug cytotoxicity and reduced proliferation of A549/CR cells both internally and externally. Particularly, miR‐130b mediated Wnt/β‐catenin signalling pathway activities, chemoresistance and proliferation in LC cell, which was partially blocked following knockdown of PTEN. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway.  相似文献   

12.
Sevoflurane is a frequently‐used clinical inhalational anaesthetic and can cause toxicity to embryos during foetal development. Embryonic stem cells (ESCs) are derived from the inner cell mass of blastospheres and can be used as a useful model of early development. Here, we found that sevoflurane significantly influenced self‐renewal ability of mESCs on stemness maintenance and cell proliferation. The cell cycle was arrested via G1 phase delay. We further found that sevoflurane upregulated expression of miR‐7a,7b to repress self‐renewal. Next we performed rescue experiments and found that after adding miR‐7a,7b inhibitor into mESCs treated with sevoflurane, its influence on self‐renewal could be blocked. Further we identified stemness factor Klf4 as the direct target of miR‐7a,7b. Overexpression of Klf4 restored self‐renewal ability repressed by miR‐7a,7b or sevoflurane. In this work, we determined that sevoflurane repressed self‐renewal ability by regulating the miR‐7a,7b/Klf4 signalling pathway in mESCs. Our study demonstrated molecular mechanism underlying the side effects of sevoflurane during early development, laying the foundation for studies on safe usage of inhalational anaesthetic during non‐obstetric surgery.  相似文献   

13.
Long non‐coding RNAs (lncRNAs) have been verified to modulate the tumorigenesis of breast cancer at multiple levels. In present study, we aim to investigate the role of lncRNA FEZF1‐AS1 on breast cancer‐stem like cells (BCSC) and the potential regulatory mechanism. In breast cancer tissue, lncRNA FEZF1‐AS1 was up‐regulated compared with controls and indicated poor prognosis of breast cancer patients. In vitro experiments, FEZF1‐AS1 was significantly over‐expressed in breast cancer cells, especially in sphere subpopulation compared with parental subpopulation. Loss‐of‐functional indicated that, in BCSC cells (MDA‐MB‐231 CSC, MCF‐7 CSC), FEZF1‐AS1 knockdown reduced the CD44+/CD24? rate, the mammosphere‐forming ability, stem factors (Nanog, Oct4, SOX2), and inhibited the proliferation, migration and invasion. In vivo, FEZF1‐AS1 knockdown inhibited the breast cancer cells growth. Bioinformatics analysis tools and series of validation experiments confirmed that FEZF1‐AS1 modulated BCSC and Nanog expression through sponging miR‐30a, suggesting the regulation of FEZF1‐AS1/miR‐30a/Nanog. In summary, our study validate the important role of FEZF1‐AS1/miR‐30a/Nanog in breast cancer stemness and tumorigenesis, providing a novel insight and treatment strategy for breast cancer.  相似文献   

14.
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+, CD8+ T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3+ T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.  相似文献   

15.
Emerging evidence suggests that microRNAs (miRNAs) serve an important role in tumorigenesis and development. Although the low expression of miR‐125a‐5p in gastric cancer has been reported, the underlying mechanism remains unknown. In the current study, the low expression of miR‐125a‐5p in gastric cancer was verified in paired cancer tissues and adjacent non‐tumour tissues. Furthermore, the GC islands in the miR‐125a‐5p region were hypermethylated in the tumour tissues. And the hypermethylation was negatively correlated with the miR‐125a‐5p expression. Target gene screening showed that the histone methyltransferase Suv39H1 was one of the potential target genes. In vitro studies showed that miR‐125a‐5p could directly suppress the Suv39H1 expression and decrease the H3K9me3 levels. On the other hand, the Suv39H1 could induce demethylation of miR‐125a‐5p, resulting in re‐activation of miR‐125a‐5p. What is more, overexpessing miR‐125a‐5p could also self‐activate the silenced miR‐125a‐5p in gastric cancer cells, which suppressed cell migration, invasion and proliferation in vitro and inhibited cancer progression in vivo. Thus, we uncovered here that the epigenetic silenced miR‐125a‐5p could be self‐activated through targeting Suv39H1 in gastric cancer, suggesting that miR‐125a‐5p might be not only the potential prognostic value as a tumour biomarker but also potential therapeutic targets in gastric cancer.  相似文献   

16.
AFAP1‐AS1 is a long non‐coding RNA that is associated with tumorigenesis and poor prognosis in a variety of cancers. We have been suggested that AFAP1‐AS1 increases tumorigenesis in laryngeal carcinoma specifically by enhancing stemness and chemoresistance. We assessed AFAP1‐AS1 expression in human laryngeal specimens, paired adjacent normal tissues and human HEp‐2 cells. Indeed, we found not only that AFAP1‐AS1 was up‐regulated in laryngeal carcinoma specimens and cells, but also that stemness‐associated genes were overexpressed. Silencing of AFAP1‐AS1 promoted HEp‐2 cell chemoresistance under cisplatin treatment. Expression of AFAP1‐AS1 was increased in drug‐resistant Hep‐2 cells. We then probed the mechanism of AFAP1‐AS1 activity and determined that miR‐320a was a potential molecular target of AFAP1‐AS1. Luciferase reporter and qRT‐PCR assays of AFAP1‐AS1 and miR‐320a levels in human specimens and cell cultures indicated that AFAP1‐AS1 negatively regulates miR‐320a. To discover the molecular mechanism of miR‐320a, we again used the DIANA Tools algorithm to predict its genetic target, RBPJ. After cloning the 3′‐untranslated regions (3′‐UTR) of RBPJ into a luciferase reporter, we determined that miR‐320a did in fact reduce RBPJ mRNA and protein levels. Ultimately, we determined that AFAP1‐AS1 increases RBPJ expression by negatively regulating miR‐320a and RBPJ overexpression rescues stemness and chemoresistance inhibited by AFAP1‐AS1 silencing. Taken together, these results suggest that AFAP1‐AS1 can serve as a prognostic biomarker in laryngeal carcinoma and that miR‐320a has the potential to improve standard therapeutic approaches to the disease, especially for cases in which cancer cell stemness and drug resistance present significant barriers to effective treatment.  相似文献   

17.
Tamoxifen (TAM) is a primary drug for treatment of estrogen receptor positive breast cancer. However, TAM resistance remains a serious threat to breast cancer patients and may be attributed to increased stemness of breast cancer. Here, we show that discs large homolog 5 (DLG5) expression is down‐regulated in TAM‐resistant breast cancer and cells. DLG5 silencing decreased the sensitivity to TAM and increased the frequency and stemness of CD44+/CD24? breast cancer stem cells (BCSCs) and TAZ, a transducer of the Hippo pathway, expression in MCF7 cells while DLG5 overexpression had opposite effects. TAZ silencing restored the sensitivity to TAM and reduced the frequency and stemness in TAM‐resistant breast cancer cells. Taken together, our data indicate that down‐regulated DLG5 expression increases the stemness of breast cancer cells by enhancing TAZ expression, contributing to TAM resistance in breast cancer.  相似文献   

18.
MiR‐16 is a tumour suppressor that is down‐regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR‐16 on macrophage polarization and subsequent T‐cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon‐γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)‐4. The identity of polarized macrophages was determined by profiling cell‐surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus‐expressing miR‐16 to assess the effects of miR‐16. Effects on macrophage–T cell interactions were analysed by co‐culturing purified CD4+ T cells with miR‐16‐expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR‐16 targets and understand its underlying mechanisms. MiR‐16‐induced M1 differentiation of mouse peritoneal macrophages from either the basal M0‐ or M2‐polarized state is indicated by the significant up‐regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin‐1, and increased secretion of M1 cytokine IL‐12 and nitric oxide. Consistently, miR‐16‐expressing macrophages stimulate the activation of purified CD4+ T cells. Mechanistically, miR‐16 significantly down‐regulates the expression of PD‐L1, a critical immune suppressor that controls macrophage–T cell interaction and T‐cell activation. MiR‐16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4+ T cells. This effect is potentially mediated through the down‐regulation of immune suppressor PD‐L1.  相似文献   

19.
MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self‐renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR‐10b in regulating the self‐renewal of mouse SSCs. We showed that miR‐10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR‐10b significantly increased the apoptosis of SSCs compared with controls. Kruppel‐like factor 4 was found to be a target gene of miR‐10b in the enhancement of SSC proliferation. These findings further our understanding of the self‐renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号