首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.  相似文献   

2.
To explore the effects of celecoxib on pressure overload‐induced cardiac hypertrophy (CH), cardiac dysfunction and explore the possible protective mechanisms. We surgically created abdominal aortic constrictions (AAC) in rats to induce CH. Rats with CH symptoms at 4 weeks after surgery were treated with celecoxib [2 mg/100 g body‐weight(BW)] daily for either 2 or 4 weeks. Survival rate, blood pressure and cardiac function were evaluated after celecoxib treatment. Animals were killed, and cardiac tissue was examined for morphological changes, cardiomyocyte apoptosis, fibrosis, inflammation and oxidative stress. Four weeks after AAC, rats had significantly higher systolic, diastolic and mean blood pressure, greater heart weight and enlarged cardiomyocytes, which were associated with cardiac dysfunction. Thus, the CH model was successfully established. Two weeks later, animals had impaired cardiac function and histopathological abnormalities including enlarged cardiomyocytes and cardiac fibrosis, which were exacerbated 2 weeks later. However, these pathological changes were remarkably prevented by the treatment of celecoxib, independent of preventing hypertension. Mechanistic studies revealed that celecoxib‐induced cardiac protection against CH and cardiac dysfunction was due to inhibition of apoptosis via the murine double mimute 2/P53 pathway, inhibition of inflammation via the AKT/mTOR/NF‐κB pathway and inhibition of oxidative stress via increases in nuclear factor E2‐related factor‐2‐mediated gene expression of multiple antioxidants. Celecoxib suppresses pressure overload‐induced CH by reducing apoptosis, inflammation and oxidative stress.  相似文献   

3.
Excessive plasma triglyceride (TG) and cholesterol levels promote the progression of several prevalent cardiovascular risk factors, including atherosclerosis, which is a leading death cause. Perilipin 5 (Plin5), an important perilipin protein, is abundant in tissues with very active lipid catabolism and is involved in the regulation of oxidative stress. Although inflammation and oxidative stress play a critical role in atherosclerosis development, the underlying mechanisms are complex and not completely understood. In the present study, we demonstrated the role of Plin5 in high-fat-diet-induced atherosclerosis in apolipoprotein E null (ApoE−/−) mice. Our results suggested that Plin5 expressions increased in the artery tissues of ApoE−/− mice. ApoE/Plin5 double knockout (ApoE−/−Plin5−/−) exacerbated severer atherogenesis, accompanied with significantly disturbed plasma metabolic profiles, such as elevated TG, total cholesterol, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol contents. ApoE−/−Plin5−/− exhibited a higher number of inflammatory monocytes and neutrophils, as well as overexpression of cytokines and chemokines linked with an inflammatory response. Consistently, the IκBα/nuclear factor kappa B pathway was strongly activated in ApoE−/−Plin5−/−. Notably, apoptosis was dramatically induced by ApoE−/−Plin5−/−, as evidenced by increased cleavage of Caspase-3 and Poly (ADP-ribose) polymerase-2. In addition, ApoE−/−Plin5−/− contributed to oxidative stress generation in the aortic tissues, which was linked with the activation of phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinases pathways. In vitro, oxidized low-density lipoprotein (ox-LDL) increased Plin5 expression in RAW264.7 cells. Its knockdown enhanced inflammation, apoptosis, oxidative stress, and lipid accumulation, while promotion of Plin5 markedly reduced all the effects induced by ox-LDL in cells. These studies strongly supported that Plin5 could be a new regulator against atherosclerosis, providing new insights on therapeutic solutions.  相似文献   

4.
The clinical application of stem cells offers great promise as a potential avenue for therapeutic use in neurodegenerative diseases. However, cell loss after transplantation remains a major challenge, which currently plagues the field. On the basis of our previous findings that fibroblast growth factor 21 (FGF‐21) protected neurons from glutamate excitotoxicity and that upregulation of FGF‐21 in a rat model of ischemic stroke was associated with neuroprotection, we proposed that overexpression of FGF‐21 protects bone marrow‐derived mesenchymal stem cells (MSCs) from apoptosis. To test this hypothesis, we examined whether the detrimental effects of apoptosis can be mitigated by the transgenic overexpression of FGF‐21 in MSCs. FGF‐21 was transduced into MSCs by lentivirus and its overexpression was confirmed by quantitative polymerase chain reaction. Moreover, FGF‐21 overexpression did not stimulate the expression of other FGF family members, suggesting it does not activate a positive feedback system. The effects of hydrogen peroxide (H2O2), tumor necrosis factor‐α (TNF‐α), and staurosporine, known inducers of apoptosis, were evaluated in FGF‐21 overexpressing MSCs and mCherry control MSCs. Caspases 3 and 7 activity was markedly and dose‐dependently increased by all three stimuli in mCherry MSCs. FGF‐21 overexpression robustly suppressed caspase activation induced by H2O2 and TNF‐α, but not staurosporine. Moreover, the assessment of apoptotic morphological changes confirmed the protective effects of FGF‐21 overexpression. Taken together, these results provide compelling evidence that FGF‐21 plays a crucial role in protecting MSCs from apoptosis induced by oxidative stress and inflammation and merits further investigation as a strategy for enhancing the therapeutic efficacy of stem cell‐based therapies.  相似文献   

5.
Curcumin exhibits anti‐inflammatory and antioxidant activities. We investigated the protective effects of curcumin in a renal injury rat model under dry‐heat conditions. We divided Sprague‐Dawley rats into four groups: dry‐heat 0‐ (normal temperature control group), 50‐, 100‐, and 150‐minute groups. Each group was divided into five subgroups (n = 10): normal saline (NS), sodium carboxymethylcellulose (CMCNa), and curcumin pretreated low, medium, and high‐dose (50, 100, and 200 mg/kg, respectively) groups. Compared to the normal temperature group, serum creatinine, blood urea nitrogen, urinary kidney injury molecule‐1, and neutrophil gelatinase‐associated load changes in lipoprotein (NGAL) levels were significantly increased in the dry‐heat environment group (P < .05); inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2) expression and malondialdehyde (MDA) and related inflammatory factor levels were increased in the kidney tissue. Superoxide dismutase (SOD) and catalase (CAT) levels were decreased. However, following all curcumin pretreatment, the serum levels of kidney injury indicators and NGAL were decreased in the urine compared to those in the NS and CMCNa groups (P < .05), whereas renal SOD and CAT activities were increased and MDA was decreased (P < .05). Renal tissues of the 150‐minute group showed obvious pathological changes. Compared to the NS group, pathological changes in the renal tissues of the 100‐ and 200‐mg/kg curcumin groups were significantly reduced. Furthermore, iNOS and COX‐2 expression and inflammatory factor levels were decreased after curcumin treatment. Curcumin exerted renoprotective effects that were likely mediated by its antioxidant and anti‐inflammatory effects in a dry‐heat environment rat model.  相似文献   

6.
This study aimed to evaluate the protective effects of alpha lipoic acid (ALA) against doxorubicin (DOX)‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg i.v.) induced nephrotoxicity evidenced by significant elevations in kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha, and renal contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3. Also, it causes significant reduction in final body weight, serum albumin, renal contents of reduced glutathione and superoxide dismutase activity. Histopathological changes in the kidney tissue confirmed the nephrotoxic effect. In contrast, pretreatment with ALA (50 mg/kg, orally) for 14 days before DOX and for 7 days after DOX administration mitigated renal toxicity evidenced by greater improvement in the examined oxidative stress, inflammation, and apoptosis parameters. In conclusion, ALA had promising protective effects against DOX‐induced nephrotoxicity that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

7.
Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling.  相似文献   

8.
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX‐induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non‐toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This study was undertaken to determine the role of secreted frizzled‐related protein 5 (SFRP5) in endothelial oxidative injury. Human aortic endothelial cells (HAECs) were exposed to different oxidative stimuli and examined for SFRP5 expression. The effects of SFRP5 overexpression and knockdown on cell viability, apoptosis, and reactive oxygen species production were measured. HAECs treated with angiotensin (Ang) II (1 μM) or oxidized low‐density lipoprotein (oxLDL) (150 μg/mL) showed a significant increase in SFRP5 expression. Overexpression of SFRP5 significantly attenuated the viability suppression and apoptosis induction by Ang II and oxLDL, whereas the knockdown of SFRP5 exerted opposite effects. Overexpression of SFRP5 prevented ROS formation and β‐catenin activation and reduced Bax expression. Co‐expression of Bax significantly reversed the anti‐apoptotic effect of SFRP5 overexpression, whereas knockdown of Bax restrained Ang II‐ and oxLDL‐induced apoptosis in HAECs. Taken together, SFRP5 confers protection against oxidative stress‐induced apoptosis through inhibition of β‐catenin activation and downregulation of Bax.  相似文献   

10.
11.
Cisplatin‐induced nephrotoxicity persists as a clinical problem despite several supportive measures to alleviate renal damage. Daidzein (DZ), a dietary isoflavone having antioxidant and anti‐inflammatory activity, is investigated in this study for protective effects against cisplatin‐induced renal injury in rats. DZ (25, 50, or 100 mg/kg; intraperitoneally; 10 days) was administered along with Cisplatin, single dose, on the 7th day of the experiment. On the 11th day, the rats were euthanized, and different samples were collected for analysis. Biochemical, histopathological, and molecular parameters were assessed to evaluate the effect of daidzein. Cisplatin injection resulted in renal dysfunction, lipid peroxidation that led to consumption of antioxidants, exaggerated apoptosis, and inflammation. These changes were associated with increase in the signaling proteins. DZ attenuated the toxic effects of cisplatin on the kidney at 100 mg/kg dose. The study concludes with the finding that daidzein imparts protection against the nephrotoxic effect of Cisplatin and can be considered as a novel, potential therapy.  相似文献   

12.
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2O2‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p16INK4a and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked H2O2‐induced superoxide formation, NADPH oxidase levels and VCAM‐1, ICAM‐1, IL‐6 and miR‐34a synthesis. Kallistatin reversed H2O2‐mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)‐2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti‐senescence and anti‐oxidant effects were attributed to SIRT1‐mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up‐regulated Let‐7g, whereas Let‐7g inhibitor abolished kallistatin's effects on miR‐34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium‐specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild‐type mouse endothelial cells, and H2O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let‐7g, SIRT1, eNOS, catalase and SOD‐1 mRNA levels, and elevated miR‐34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let‐7g‐mediated miR‐34a‐SIRT1‐eNOS pathway.  相似文献   

13.
The study aimed to examine the effects of nobiletin on the toxicity model induced with acetaminophen (APAP). For this purpose, 24 adult male rats were equally divided into four groups. The groups were the control group (group 1); dimethyl sulfoxide only, the APAP group (group 2) received a single dose of APAP 1000 mg/kg on the 10th day of experiment; the Nobiletin group (group 3), nobiletin (10 mg/kg) for 10 days; and the APAP + Nobiletin group (group 4), nobiletin (10 mg/kg) for 10 days with a single dose of APAP (1000 mg/kg) administered on the 10th day and the experiment ended after 48 hours. At the end of the study, a significant increase in malondialdehyde, interleukin‐1β (IL‐1β), interleukin‐6 (IL‐6), and tumor necrosis factor‐α (TNF‐α) levels and a significant decrease in glutathione levels, glutathione peroxidase activities and nuclear factor erythroid‐derived 2‐like 2 (Nrf‐2) and heme oxygenase‐1 (HO‐1) expressions were observed with APAP application in liver and kidney tissues. Serum aspartate transaminase (AST), alanine transaminase (ALT), urea, and creatinine levels were also significantly increased in the APAP group. However, nobiletin treatment in group 4 reversed oxidative stress and inflammatory and histopathological signs caused by APAP. It is concluded that nobiletin may be a beneficial substance that confers hepatorenal protection to APAP‐induced toxicity via antioxidant and anti‐inflammatory mechanisms.  相似文献   

14.
15.
Bcl‐2 associated athanogene 5 (Bag5) is a novel endoplasmic reticulum (ER) regulator. However, its role in catecholamine‐induced endothelial cells damage has not been fully understood. In our study, catecholamine was used to mimic hypertension‐related endothelial cell damage. Then, western blots, enzyme‐linked immunosorbent assay, immunofluorescence, quantitative polymerase chain reaction and pathway analysis were conducted to analyze the role of Bag5 in endothelial cell damage in response to catecholamine. Our results indicated that the endothelial cell viability was impaired by catecholamine. Interestingly, Bag5 overexpression significantly reversed endothelial cell viability. Mechanistically, Bag5 overexpression inhibited ER stress, attenuated oxidative stress and repressed inflammation in catecholamine‐treated endothelial cells. These beneficial effects finally contributed to endothelial cell survival under catecholamine treatment. Pathway analysis demonstrated that Bag5 was under the control of the mitogen‐activated protein kinase (MAPK)–extracellular‐signal‐regulated kinase (ERK) signaling pathway. Reactivation of the MAPK–ERK pathway could upregulate Bag5 expression and thus promote endothelial cell survival through inhibiting oxidative stress, ER stress, and inflammation. Altogether, our results illustrate that Bag5 overexpression sustains endothelial cell survival in response to catecholamine treatment. This finding identifies Bag5 downregulation and the inactivated MAPK–ERK pathway as potential mechanisms underlying catecholamine‐induced endothelial cell damage.  相似文献   

16.
17.
Weight gain and obesity are among the most important risk factors for post-menopausal oestrogen-dependent breast cancer (EDBC). Weight gain is associated with oxidative stress, which in turn promotes breast cancer progression. We carried out a prospective study in 216 consecutive post-menopausal breast cancer patients aiming to examine the correlations between traditional prognostic factors (tumour size, T, nodal, N, grading, G, and metastasis status, M), and body mass index (BMI), leptin, pro-inflammatory cytokines (Interleukin, IL,-6 and tumour necrosis factor-alpha, TNF-α), and oxidative stress (reactive oxygen species, ROS, glutathione peroxidase, GPx, superoxide dismutase, SOD) among patients with oestrogen receptor (ER)+ and ER− breast cancers. Distribution of T, N and M categories did not differ between ER+ and ER− breast cancer patients. ER− patients showed a higher incidence of G3 tumours. Weight, BMI, leptin, IL-6 and ROS were higher in ER+ compared with ER− patients. Among ER+ patients, BMI, leptin, IL-6 and ROS correlated with T and M. Leptin, IL-6 and ROS were positively correlated also with N. Among ER− patients, BMI and leptin did not correlate with any of prognostic parameters, whereas a positive correlation between IL-6, ROS and M was found. Multivariate regression analysis showed that BMI, leptin, IL-6 and ROS were predictive for T, N and M in ER+ patients. Weight gain, inflammation and oxidative stress are involved in EDBC prognosis. Their modulation through antidiabetic, anti-inflammatory and antioxidants drugs combined with endocrine therapy may constitute a targeted approach in post-menopausal EDBC.  相似文献   

18.
Pesticides are known to cause a wide range of reproductive problems that possess degenerative effects on mammalian fertility. Glyphosate (GLP), a broad‐spectrum organophosphate herbicide, is known to be a potent mammalian toxicant. The present study aims at assessing the GLP‐induced (0.1, 2.0, and 4.0 mg/ml) granulosa cells toxicity and evaluating the mitigating effects of vitamins C and E (0.5 mM and 1.0 mM) in healthy caprine antral follicles, cultured in vitro in a dose‐ and time‐dependent manner (24, 48, and 72 hr) and subjected to various cytotoxic and geno‐toxic analysis, namely, classic histology, EB/AO differential staining, oxidative stress parameters, and antioxidant enzymatic activity. The histomorphological analysis and EB/AO staining elucidated increase in the incidence of apoptotic attributes within granulosa cells with increasing dose and duration of the GLP treatment. The highest apoptotic frequency was observed at 4.0 mg/ml GLP after 72‐hr exposure duration in comparison with the control. GLP exposure also led to a significant decline in the antioxidant enzymes’ activity, namely, SOD, catalase, and GST along with enhanced lipid peroxidation and reduced FRAP activity in a dose‐ and time‐dependent manner. Vitamins C and E supplementation decreased oxidative stress‐mediated granulosa cells apoptosis, suggesting its efficiency to diminish GLP‐mediated GCs cytotoxicity and thereby, preventing associated fertility disorders.  相似文献   

19.
Toxicological studies have demonstrated the relation between use of agrochemicals and fertility issues within males. Thus, the present study aimed to elucidate the propensity of cypermethrin (CYP) in bringing testicular germ cell apoptosis and effective attenuation by vitamins C and E in caprines. Reproductive toxicity of CYP was evaluated using histomorphological, cytological, and biochemical changes in the testicular germ cells in dose‐dependent (1, 5, 10 μg/mL) and time‐dependent (4, 6, 8 h) manner. Histological and ethidium bromide/acridine orange fluorescence staining exhibited that vitamins C and E (0.5 and 1.0 mM) successfully diminished the CYP‐induced testicular germ cells apoptosis. CYP exposure along with vitamins C and E supplementation also resulted in significantly increased ferric reducing antioxidant power activity along with the antioxidant enzymes, namely catalase, superoxide dismutase, and glutathione‐s‐transferase, and decreased lipid peroxidation in testicular germ cells. Thus, vitamins C and E ameliorated CYP‐induced testicular germ cell apoptosis, thereby preventing spermatogonial cells degeneration and male infertility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号