首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Myocardial fibrosis after myocardial infarction (MI) is a leading cause of heart diseases. MI activates cardiac fibroblasts (CFs) and promotes CF to myofibroblast transformation (CMT). This study aimed to investigate the role of miR‐21 in the regulation of CMT and myocardial fibrosis. Primary rat CFs were isolated from young SD rats and treated with TGF‐β1, miR‐21 sponge or Jagged1 siRNA. Cell proliferation, invasion and adhesion were detected. MI model was established in male SD rats using LAD ligation method and infected with recombinant adenovirus. The heart function and morphology was evaluated by ultrasonic and histological analysis. We found that TGF‐β1 induced the up‐regulation of miR‐21 and down‐regulation of Jagged1 in rat CFs. Luciferase assay showed that miR‐21 targeted 3′‐UTR of Jagged1 in rat CFs. miR‐21 sponge inhibited the transformation of rat CFs into myofibroblasts, and abolished the inhibition of Jagged1 mRNA and protein expression by TGF‐β1. Furthermore, these effects of miR‐21 sponge on rat CFS were reversed by siRNA mediated knockdown of Jagged1. In vivo, heart dysfunction and myocardial fibrosis in MI model rats were partly improved by miR‐21 sponge but were aggravated by Jagged1 knockdown. Taken together, these results suggest that miR‐21 promotes cardiac fibroblast‐to‐myofibroblast transformation and myocardial fibrosis by targeting Jagged1. miR‐21 and Jagged1 are potential therapeutic targets for myocardial fibrosis.  相似文献   

4.
5.
Parkinson's disease (PD) is a frequent progressive neurodegenerative disorder. Impaired mitochondrial function is a major feature of sporadic PD. Some susceptibility or causative genes detected in PD are strongly associated with mitochondrial dysfunction including PGC1α, TFAM and GSK3β. microRNAs (miRNAs) are non‐coding RNAs whose altered levels are proven in disparate PD models and human brains. Therefore, the aim of this study was to detect modulations of miRs upstream of PGC1α, TFAM and GSK3β in association with PD onset and progress. In this study, a total of 33 PD subjects and 25 healthy volunteers were recruited. Candidate miRNA (miR‐376a) was selected through target prediction tools and literature survey. Chronic and acute in vitro PD models were created by MPP+‐intoxicated SHSY5Y cells. The levels of miR‐376a and aforementioned genes were assessed by RT‐qPCR. The expression of target genes was decreased in chronic model while there were dramatically up‐regulated levels of those genes in acute model of PD. miR‐376a was strongly altered in both acute and chronic PD models as well as PBMCs of PD patients. Our results also showed overexpression of PGC1α, and TFAM in PBMCs is inversely correlated with down‐regulation of miR‐376a, suggesting that miR‐376a possibly has an impact on PD pathogenesis through regulation of these genes which are involved in mitochondrial function. miR‐376a expression in PD‐derived PBMCs was also correlated with disease severity and may serve as a potential biomarker for PD diagnosis. This is the first study showing altered levels of miR‐376a in PD models and PBMCs, suggesting the probable role of this miRNA in PD pathogenesis. The present study also proposed TFAM and PGC1α as target genes of miR‐376a for the first time, through which it possibly can exert its impact on PD pathogenesis.  相似文献   

6.
7.
Our previously published study documented a deregulation of the microRNA miR‐150 in colorectal cancer. Here, we investigated further, in vitro and in vivo, the potential molecular mechanisms underlying the involvement of miR‐150 in colorectal cancer, using the appropriate molecular biological methods. We report that miR‐150 is a key regulator in the tumourigenesis and progression of colorectal cancer, by acting as a tumour suppressor targeting c‐Myb. The current findings suggest that miR‐150 may have important roles in the pathogenesis of colorectal cancer.  相似文献   

8.
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ‐induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ‐induced apoptosis. Our results revealed that β‐catenin and miR‐21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR‐21 expression through inhibiting the Wnt/β‐catenin/TCF4 pathway. Furthermore, down‐regulation of miR‐21 enhanced the pro‐apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ‐mediated apoptosis in a miR‐21‐dependent manner. In conclusion, SFN effectively enhances TMZ‐induced apoptosis by inhibiting miR‐21 via Wnt/β‐catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment.

  相似文献   


9.
MiR‐34c is considered a potent tumour suppressor because of its negative regulation of multiple target mRNAs that are critically associated with tumorigenesis and metastasis. In the present study, we demonstrated a novel target of miR‐34c, KITLG, which has been implicated in colorectal cancer (CRC). First, we found a significant negative relationship between miR‐34c and KITLG mRNA expression levels in CRC cell lines, including HT‐29, HCT‐116, SW480 and SW620 CRC cell lines. In silico analysis predicted putative binding sites for miR‐34c in the 3′ untranslated region (3′UTR) of KITLG mRNA. A dual‐luciferase reporter assay further confirmed that KITLG is a direct target of miR‐34c. Then, the cell lines were infected with lentiviruses expressing miR‐34c or a miR‐34c specific inhibitor. Restoration of miR‐34c dramatically reduced the expression of KITLG mRNA and protein, while silencing of endogenous miR‐34c increased the expression of KITLG protein. The miR‐34c‐mediated down‐regulation of KITLG was associated with the suppression on proliferation, cellular transformation, migration and invasion of CRC cells, as well as the promotion on apoptosis. Knockdown of KITLG by its specific siRNA confirmed a critical role of KITLG down‐regulation for the tumour‐suppressive effects of miR‐34c in CRC cells. In conclusion, our results demonstrated that miR‐34c might interfere with KITLG‐related CRC and could be a novel molecular target for CRC patients.  相似文献   

10.
11.
12.
13.
14.
15.

Objective

β‐catenin is one of the most critical oncogenes associated with many kinds of human cancers, especially in the human CRC. Innate immunity recognizes tumour derived damage‐associated molecular patterns (DAMPs) and primes the anti‐tumour adaptive responses. While the function of β‐catenin in CRC tumourigenesis is well established, its impact on innate immune evasion is largely unknown. The aim of this study is to characterize the role of β‐catenin in inhibiting RIG‐I‐like receptor (RLR)‐mediated IFN‐β signalling in colorectal cancer.

Materials and Methods

Immunohistochemical staining and western blotting were conducted to study the expression of β‐catenin, IRF3 and phospho‐IRF3 (p‐IRF3) in CRC samples and cell lines. Plaque assay determining virus replication was performed to assess the regulation of β‐catenin on IFN‐β signalling. The inhibition of β‐catenin on RLR‐mediated IFN‐β signalling was further studied by real‐time analyses and reporter assays in the context of lentiviral‐mediated β‐catenin stably knocking down. Lastly, co‐immunoprecipitation and nuclear fractionation assay were conducted to monitor the interaction between β‐catenin and IRF3.

Results

We found that high expression of β‐catenin positively correlated with the expression of IRF3 in CRC cells. Overexpression of β‐catenin increased the viral replication. Conversely knocking down of β‐catenin inhibited viral replication. Furthermore, our data demonstrated that β‐catenin could inhibit the expression of IFN‐β and interferon‐stimulated gene 56 (ISG56). Mechanistically, we found that β‐catenin interacted with IRF3 and blocked its nuclear translocation.

Conclusion

Our study reveals an unprecedented role of β‐catenin in enabling innate immune evasion in CRC.
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号