首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Notch pathway is involved in multiple aspects of vascular development, including arterial-venous differentiation. Here, we show that Notch stimulation instructively induces arterial characteristics in endothelial cells (EC). Forced expression of Notch intracellular domain (NICD, activated form of Notch) induced mRNA expression for a subset of arterial-specific markers such as ephrinB2, connexin40, and HERP1 only in EC but not other cell lines. In co-culture experiments using EC and either Dll4- or Jagged1-expressing cells, we found that Dll4 stimulation but not Jagged1 markedly induced ephrinB2 expression. An inducible expression of HERP1 and HERP2 by NICD has no measurable effects on expression of ephrinB2 and venous marker EphB4 although either HERP1 or HERP2 overexpression exerts potent inhibitory effects on EphB4 expression without ephrinB2 induction. We also found no functional interaction between Notch and TGF-beta-ALK1 signalings in an induction of ephrinB2 expression. These results suggest that Dll4-stimulated Notch signaling induces a part of arterial characteristics only in EC via HERP-independent mechanism. Our data provide new insight into the molecular mechanism of ligand-selective Notch activation during differentiation of arterial EC.  相似文献   

2.
3.
CCM3, a product of the cerebral cavernous malformation 3 or programmed cell death 10 gene (CCM3/PDCD10), is broadly expressed throughout development in both vertebrates and invertebrates. Increasing evidence indicates a crucial role of CCM3 in vascular development and in regulation of angiogenesis and apoptosis. Furthermore, loss of CCM3 causes inherited (familial) cerebral cavernous malformation (CCM), a common brain vascular anomaly involving aberrant angiogenesis. This study focused on signalling pathways underlying the angiogenic functions of CCM3. Silencing CCM3 by siRNA stimulated endothelial proliferation, migration and sprouting accompanied by significant downregulation of the core components of Notch signalling including DLL4, Notch4, HEY2 and HES1 and by activation of VEGF and Erk pathways. Treatment with recombinant DLL4 (rhDLL4) restored DLL4 expression and reversed CCM3‐silence‐mediated impairment of Notch signalling and reduced the ratio of VEGF‐R2 to VEGF‐R1 expression. Importantly, restoration of DLL4‐Notch signalling entirely rescued the hyper‐angiogenic phenotype induced by CCM3 silence. A concomitant loss of CCM3 and the core components of DLL4‐Notch signalling were also demonstrated in CCM3‐deficient endothelial cells derived from human CCM lesions (CCMEC) and in a CCM3 germline mutation carrier. This study defined DLL4 as a key downstream target of CCM3 in endothelial cells. CCM3/DLL4‐Notch pathway serves as an important signalling for endothelial angiogenesis and is potentially implicated in the pathomechanism of human CCMs.  相似文献   

4.
Previous studies have demonstrated that Notch signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, our aim was to explore the role of the Notch signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of curcumin during (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). DAPT, a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to study Notch activity. Further, HUVECs were exposed to H2O2 in the absence or presence of curcumin. DAPT and Notch1 siRNA significantly inhibited OSI and the expression of Notch1 and Hes1. Curcumin conferred a protective effect on the HUVECs against H2O2, which was evidenced by improved cell viability, adhesive ability and migratory ability and a decreased apoptotic index, decreased production of reactive oxygen species (ROS) and a reduction in several biochemical parameters. Immunofluorescence and Western blotting analyses demonstrated that H2O2 treatment upregulated the expression of Notch1, Hes1, Caspase3, Bax and cytochrome c downregulated the expression of Bcl2, and treatment with curcumin reversed these effects. We demonstrated for the first time that the inhibition of Notch signaling pathway imparts a protective effect against endothelial OSI. The protective effects of curcumin against OSI are at least in part dependent on Notch1 inhibition.  相似文献   

5.
Chagas disease is a vector‐borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti‐inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.  相似文献   

6.
7.
8.
Notch 1信号途径参与决定细胞命运,其水解后产生的活性片段——胞质段(Notch 1 intracellular cytoplasmic domain, NICD)能被转运进核,激活下游靶基因的表达.Notch 1参与细胞的增殖、分化、程序性死亡、发育过程中的形态发生和器官形成等许多重要过程.为了获得重组的NICD,以大鼠脑cDNA文库为模板,用PCR方法扩增出编码NICD的基因片段,克隆至谷胱甘肽-S-转移酶(GST)融合表达载体pGEX-KG中,并在大肠杆菌中获得较高水平的表达.表达的融合蛋白GST-NICD分子质量约为120 ku左右,以包涵体和可溶性两种形式存在,易于亲合层析纯化.为制备抗体和进一步的功能研究奠定了基础.  相似文献   

9.
The development of the cerebral cortex is a dynamic and coordinated process in which cell division, cell death, migration, and differentiation must be highly regulated to acquire the final architecture and functional competence of the mature organ. Notch pathway is an important regulator of differentiation and it is essential to maintain neural stem cell (NSC) pool. Here, we studied the role of epigenetic modulators such as lysine‐specific demethylase 1 (LSD1) and its interactor CoREST in the regulation of the Notch pathway activity during the development of the cerebral cortex. We found that CoREST and LSD1 interact in vitro with RBPJ‐κ in the repressor complex and these proteins are released upon overexpression of Notch intracellular domain (NICD). We corroborated LSD1 and RBPJ‐κ interaction in developing cerebral cortex and also found that LSD1 binds to the hes1 promoter. Knock‐down of CoREST and LSD1 by in utero electroporation increases Hes1 expression in vivo and decreases Ngn2. Interestingly, we found a functional interaction between CoREST and LSD1 with Notch pathway. This conclusion is based on the observation that both the defects in neuronal migration and the increase in the number of cells expressing Sox2 and Tbr2 were associated to the knock‐down of either CoREST or LSD1 and were reversed by the loss of Notch. These results demonstrate that CoREST and LSD1 downregulate the Notch pathway in the developing cerebral cortex, thus suggesting a role of epigenetic regulation in the fine tuning of cell differentiation. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1360–1373, 2016  相似文献   

10.
Notch receptor plays a crucial role in proliferation and differentiation of many cell types. To elucidate the function of Notch signaling in osteogenesis, we transfected the constitutively active Notch1 (Notch intracellular domain, NICD) into two different osteoblastic mesenchymal cell lines, KusaA and KusaO, and examined the changes of their osteogenic potentials. In NICD stable transformants (KusaA(NICD) and KusaO(NICD)), osteogenic properties including alkaline phosphatase activity, expression of osteocalcin and type I collagen, and in vitro calcification were suppressed. Transient transfection of NICD attenuated the promoter activities of Cbfa1 and Ose2 element. KusaA was capable of forming trabecular bone-like tissues when injected into mouse abdomen, but this in vivo bone forming activity was significantly suppressed in KusaA(NICD). Osteoclasts were induced in the KusaA-derived bone-like tissues, but lacked in the KusaA(NICD)-derived tissues. These results suggest that Notch signaling suppresses the osteoblastic differentiation of mesenchymal progenitor cells.  相似文献   

11.
Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.  相似文献   

12.
The inactivation of plasminogen activator inhibitor‐1 (PAI‐1) has been shown to exert beneficial effects in age‐related vascular diseases. Limited information is available on the molecular mechanisms regarding the negatively regulated expression of PAI‐1 in the vascular system. In this study, we observed an inverse correlation between SIRT1, a class III histone deacetylase, and PAI‐1 expression in human atherosclerotic plaques and the aortas of old mice, suggesting that internal negative regulation exists between SIRT1 and PAI‐1. SIRT1 overexpression reversed the increased PAI‐1 expression in senescent human umbilical vein endothelial cells (HUVECs) and aortas of old mice, accompanied by decreased SA‐β‐gal activity in vitro and improved endothelial function and reduced arterial stiffness in vivo. Moreover, the SIRT1‐mediated inhibition of PAI‐1 expression exerted an antisenescence effect in HUVECs. Furthermore, we demonstrated that SIRT1 is able to bind to the PAI‐1 promoter, resulting in a decrease in the acetylation of histone H4 lysine 16 (H4K16) on the PAI‐1 promoter region. Thus, our findings suggest that the SIRT1‐mediated epigenetic inhibition of PAI‐1 expression exerts a protective effect in vascular endothelial senescence.  相似文献   

13.
Airway basal cells (BC) function as stem/progenitor cells capable of differentiating into the luminal ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. The objective of this study was to define the role of Notch signaling in regulating human airway BC differentiation into a pseudostratified mucociliated epithelium. Notch inhibition with γ-secretase inhibitors demonstrated Notch activation is essential for BC differentiation into secretory and ciliated cells, but more so for the secretory lineage. Sustained cell autonomous ligand independent Notch activation via lentivirus expression of the intracellular domain of each Notch receptor (NICD1-4) demonstrated that the NOTCH2 and 4 pathways have little effect on BC differentiation into secretory and ciliated cells, while activation of the NOTCH1 or 3 pathways has a major influence, with persistent expression of NICD1 or 3 resulting in a skewing toward secretory cell differentiation with a parallel decrease in ciliated cell differentiation. These observations provide insights into the control of the balance of BC differentiation into the secretory vs ciliated cell lineage, a balance that is critical for maintaining the normal function of the airway epithelium in barrier defense against the inhaled environment.  相似文献   

14.
CCM3, also named as PDCD10, is a ubiquitous protein expressed in nearly all tissues and in various types of cells. It is essential for vascular development and post‐natal vessel maturation. Loss‐of‐function mutation of CCM3 predisposes for the familial form of cerebral cavernous malformation (CCM). We have previously shown that knock‐down of CCM3 stimulated endothelial angiogenesis via impairing DLL4‐Notch signalling; moreover, loss of endothelial CCM3 stimulated tumour angiogenesis and promoted tumour growth. The present study was designed to further elucidate the inside signalling pathway involved in CCM3‐ablation‐mediated angiogenesis. Here we report for the first time that silencing endothelial CCM3 led to a significant up‐regulation of EphB4 mRNA and protein expression and to an increased kinase activity of EphB4, concomitantly accompanied by an activation of Erk1/2, which was reversed by treatment with the specific EphB4 kinase inhibitor NVP‐BHG712 (NVP), indicating that silencing CCM3 activates EphB4 kinase forward signalling. Furthermore, treatment with NVP rescued the hyper‐angiogenic phenotype induced by knock‐down of endothelial CCM3 in vitro and in vivo. Additional study demonstrated that the activation of EphB4 forward signalling in endothelial cells under basal condition and after CCM3‐silence was modulated by DLL4/Notch signalling, relying EphB4 at downstream of DLL4/Notch signalling. We conclude that angiogenesis induced by CCM3‐silence is mediated by the activation of EphB4 forward signalling. The identified endothelial signalling pathway of CCM3‐DLL4/Notch‐EphB4‐Erk1/2 may provide an insight into mechanism of CCM3‐ablation‐mediated angiogenesis and could potentially contribute to novel therapeutic concepts for disrupting aberrant angiogenesis in CCM and in hyper‐vascularized tumours.  相似文献   

15.
Brain arteriovenous malformations (AVMs) which associate with angiogenesis due to local hypertension, chronic cerebral ischaemia and tissue hypoxia usually lead to haemorrhage, however, the therapeutic medicine for the disease is still lacking. 2‐methoxyestradiol (2‐ME) has been shown effective in the anti‐angiogenic treatment. This study was conducted to examine whether and how 2‐ME could improve the vascular malformations. Intracranial venous hypertension (VH) model produced in adult male Sprague‐Dawley rats and culture of human umbilical vein endothelial cells (HUVECs) at the anoxia condition were used to induce in vivo and in vitro angiogenesis, respectively. Lentiviral vectors of ID‐1 and p53 genes and of their siRNA were intracranially injected into rats and transfected into HUVECs to overexpress and down‐regulate these molecules. 2‐ME treatment not only reduced the in vivo progression of brain tissue angiogenesis in the intracranial VH rats and the in vitro increases in microvasculature formation, cellular migration and HIF‐1α expression induced by anoxia in HUVECs but also reversed the up‐regulation of ID‐1 and down‐regulation of p53 in both the in vivo and in vitro angiogenesis models. All of the anti‐angiogenesis effects of 2‐ME observed in VH rats and anoxic HUVECs were abrogated by ID‐1 overexpression and p53 knockdown. Our data collectively suggest that 2‐ME treatment inhibits hypoxia/anoxia‐induced angiogenesis dependently on ID‐1 down‐regulation and p53 up‐regulation, providing a potential alternative medical treatment for un‐ruptured AVM patients.  相似文献   

16.
ADSCs (adipose‐derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue‐derived single‐cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose‐derived single‐cell‐clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ‐secretase inhibitor, DAPT (N‐[N‐(3,5‐difluorophenacetyl)‐l ‐alanyl]‐(S)‐phenylglycine t‐butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft‐tissue augmentation application.  相似文献   

17.
Regulated intestinal stem cell proliferation and differentiation are required for normal intestinal homeostasis and repair after injury. The Notch signaling pathway plays fundamental roles in the intestinal epithelium. Despite the fact that Notch signaling maintains intestinal stem cells in a proliferative state and promotes absorptive cell differentiation in most species, it remains largely unclear how Notch signaling itself is precisely controlled during intestinal homeostasis. We characterized the intestinal phenotypes of brom bones, a zebrafish mutant carrying a nonsense mutation in hnRNP I. We found that the brom bones mutant displays a number of intestinal defects, including compromised secretory goblet cell differentiation, hyperproliferation, and enhanced apoptosis. These phenotypes are accompanied by a markedly elevated Notch signaling activity in the intestinal epithelium. When overexpressed, hnRNP I destabilizes the Notch intracellular domain (NICD) and inhibits Notch signaling. This activity of hnRNP I is conserved from zebrafish to human. In addition, our biochemistry experiments demonstrate that the effect of hnRNP I on NICD turnover requires the C-terminal portion of the RAM domain of NICD. Our results demonstrate that hnRNP I is an evolutionarily conserved Notch inhibitor and plays an essential role in intestinal homeostasis.  相似文献   

18.
19.
Protein O-fucosyltransferase 1 (Pofut1), which catalyzes the addition of O-linked fucose to the EGF domains of the Notch receptor, is indispensable for Notch signaling activation. However, the mechanism of action of Pofut1 in mice is still unclear. Mouse embryos lacking Pofut1 shows defects in valve formation and trabeculation in the cardiovascular system, which are almost identical abnormalities to those of the RBP-Jk mutants. In our current study, we have examined the epistatic relationship between the functions of Pofut1 and activated-Notch1 (NICD1) by taking advantage of the fact that forced expression of NICD1 results in myocardial defects. These defects were still evident in NICD1-expressing embryos irrespective of the presence or absence of Pofut1, which indicates that Pofut1 is required for Notch signaling upstream of NICD1. We further found that Pofut1-null cells do not possess normally localized Notch1 receptors, which may results in their lack of interaction with the Dll1 ligand in the presomitic mesoderm where Notch signaling plays a pivotal role. We propose that altered trafficking pathways may account for the abnormal accumulation of the Notch1 receptor in the endoplasmic reticulum in Pofut1-null mouse embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号