首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N Kataoka  M Ohno  I Moda    Y Shimura 《Nucleic acids research》1995,23(18):3638-3641
It has been shown that the monomethylated cap structure plays important roles in pre-mRNA splicing and nuclear export of RNA. As a candidate for the factor involved in these nuclear events we have previously purified an 80 kDa nuclear cap binding protein (NCBP) from a HeLa cell nuclear extract and isolated its full-length cDNA. In this report, in order to obtain a clue to the cellular functions of NCBP, we attempted to identify a factor(s) that interacts with NCBP. Using the yeast two-hybrid system we isolated three clones from a HeLa cell cDNA library. We designated the proteins encoded by these clones NIPs (NCBP interacting proteins). NIP1 and NIP2 have an RNP consensus-type RNA binding domain, whereas NIP3 contains a unique domain of Arg-Glu or Lys-Glu dipeptide repeats. We also show that NCBP requires NIP1 for binding to the cap structure. Possible roles of NIPs in cap-dependent nuclear processes are discussed.  相似文献   

2.
The study aims to verify the hypothesis that up‐regulation of microRNA‐300 (miR‐300) targeting CUL4B promotes apoptosis and suppresses proliferation, migration, invasion, and epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells by regulating the Wnt/β‐catenin signaling pathway. Pancreatic cancer tissues and adjacent tissues were collected from 110 pancreatic cancer patients. Expression of miR‐300, CUL4B, Wnt, β‐catenin, E‐cadherin, N‐cadherin, Snail, GSK‐3β, and CyclinD1 were detected using qRT‐PCR and Western blot. CFPAC‐1, Capan‐1, and PANC‐1 were classified into blank, negative control (NC), miR‐300 mimics, miR‐300 inhibitors, siRNA‐CUL4B, and miR‐300 inhibitors + siRNA‐CUL4B groups. The proliferation, migration, invasion abilities, the cell cycle distribution, and apoptosis rates were measured in CCK‐8 and Transwell assays. Pancreatic cancer tissues showed increased CUL4B expression but decreased miR‐300 expression. When miR‐300 was lowly expressed, CUL4B was upregulated which in‐turn activated the Wnt/β‐catenin pathway to protect the β‐catenin expression and thus induce EMT. When miR‐300 was highly expressed, CUL4B was downregulated which in‐turn inhibited the Wnt/β‐catenin pathway to prevent EMT. Weakened cell migration and invasion abilities and enhanced apoptosis were observed in the CUL4B group. The miR‐300 inhibitors group exhibited an evident increase in growth rate accompanied the largest tumor volume. Smaller tumor volume and slower growth rate were observed in the miR‐300 mimics and siRNA‐CUL4B group. Our study concludes that lowly expressed miR‐300 may contribute to highly expressed CUL4B activating the Wnt/β‐catenin signaling pathway and further stimulating EMT, thus promoting proliferation and migration but suppressing apoptosis of pancreatic cancer cells.  相似文献   

3.
Pancreatic cancer is a common malignant tumor with poor prognosis. Recently, cancer stem cells (CSCs) were identified in several solid tumors, including pancreatic cancer. Although accumulating evidence indicates that sirtuin 1 (SIRT1) exerts biological functions in various cancers, how it contributes to tumorigenesis and metastasis of pancreatic cancer, as well as its role in CSCs, is still poorly defined. Here we show that SIRT1 interacts with the Cullin 4B (CUL4B)-Ring E3 ligase (CRL4B) complex, which is responsible for H2AK119 monoubiquitination (H2AK119ub1), collaborating as a functional unit. Genome-wide analysis of SIRT1/CUL4B targets identified a cohort of genes, including GRHL3 and FOXO3, critically involved in cell differentiation, growth, and migration. Furthermore, we found that SIRT1 and CUL4B collectively promote the proliferation, autophagy, and invasion of pancreatic cancer cells. Remarkably, we demonstrate that SIRT1/CUL4B promotes CSC-like properties, including increased stemness marker expression and sphere formation. In vivo experiments implied that SIRT1 promoted established tumor xenograft growth, increased tumor-initiating capacity in NOD/SCID mice, and increased CSC frequency. Strikingly, SIRT1 and CUL4B expression is markedly upregulated in a variety of human cancers, including pancreatic cancer. Our data provide a molecular basis for the functional interplay between histone deacetylation and ubiquitination. The results also implicate the SIRT1/CRL4B complex in pancreatic cancer metastasis and stem cell properties, thus supporting SIRT1 as a promising potential target for cancer therapy development.Subject terms: Cancer stem cells, Metastasis  相似文献   

4.
5.
CUL4A and CUL4B, which are derived from the same ancestor, CUL4, encode scaffold proteins that organize cullin-RING ubiquitin ligase (E3) complexes. Recent genetic studies have shown that germ line mutation in CUL4B can cause mental retardation, short stature, and other abnormalities in humans. CUL4A was observed to be overexpressed in breast and hepatocellular cancers, although no germ line mutation in human CUL4A has been reported. Although CUL4A has been known to be involved in a number of cellular processes, including DNA repair and cell cycle regulation, little is known about whether CUL4B has similar functions. In this report, we tested the functional importance of CUL4B in cell proliferation and characterized the nuclear localization signal (NLS) that is essential for its function. We found that RNA interference silencing of CUL4B led to an inhibition of cell proliferation and a prolonged S phase, due to the overaccumulation of cyclin E, a substrate targeted by CUL4B for ubiquitination. We showed that, unlike CUL4A and other cullins that carry their NLS in their C termini, NLS in CUL4B is located in its N terminus, between amino acid 37 and 40, KKRK. This NLS could bind to importin α1, α3, and α5. NLS-deleted CUL4B was distributed in cytoplasm and failed to promote cell proliferation. Therefore, the nuclear localization of CUL4B mediated by NLS is critical for its normal function in cell proliferation.  相似文献   

6.
7.
Aberrant expression of CUL4B was identified in various types of solid cancers. Cumulative evidences support the oncogenic role of CUL4B in cancers, including regulation of cell proliferation and signal transduction. However, its clinical value and potential pathogenic mechanism in diffuse large B-cell lymphoma (DLBCL) have not been described previously. Therefore, we hypothesize that overexpressed CUL4B may contribute to the pathogenesis of DLBCL. The aim of this study is to assess the expression and the biological function of CUL4B in DLBCL progression. In our study, CUL4B overexpression was observed in DLBCL tissues, and its upregulation was closely associated with poor prognosis in patients. Furthermore, the functional roles of CUL4B was detected both in vitro and in vivo. We demonstrated that silencing CUL4B could not only induce cell proliferation inhibition, cell cycle arrest, and motility attenuation of DLBCL cells in vitro, but also decrease tumor growth in DLBCL xenografts mice. In addition, we identi?ed that CUL4B may act as a potent inductor of JNK phosphorylation in regulation of autophagy. Our findings demonstrated a significant role of CUL4B in the development and progression of DLBCL. CUL4B may act as a useful biomarker and a novel therapeutic target in DLBCL.  相似文献   

8.
The ubiquitin-proteasome system for protein degradation plays a major role in regulating cell function and many signaling proteins are tightly controlled by this mechanism. Among these, Regulator of G Protein Signaling 2 (RGS2) is a target for rapid proteasomal degradation, however, the specific enzymes involved are not known. Using a genomic siRNA screening approach, we identified a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation. While the more typical F-box partners CUL1 and Skp1 can bind FBXO44, that E3 ligase complex does not bind RGS2 and is not involved in RGS2 degradation. These observations define an unexpected DDB1/CUL4B-containing FBXO44 E3 ligase complex. Pharmacological targeting of this mechanism provides a novel therapeutic approach to hypertension, anxiety, and other diseases associated with RGS2 dysregulation.  相似文献   

9.
10.
Cullin 4B (CUL4B) mutations have been implicated in mental retardation and dopamine‐related behaviors due to disruptions in their interaction with cullin‐RING E3 ligases (CRLs). Thus, further identification of CUL4B substrates can increase the knowledge of protein homeostasis and illuminate the role of CUL4B in neuropsychiatric disease. However, the transient nature of the coupling between CUL4B and its substrates is difficult to detect in vivo using current approaches, thus hampers efforts to investigate functions of CRLs within unperturbed living systems. In this study, we sought to discover CUL4B interactants with or without dopamine stimulation. BirA (118G) proximity‐dependent biotin labeling combined with LC‐MS was employed to biotinylate and identify transient and weak interactants of CUL4B. After purification with streptavidin beads and identified by LC‐MS, a total of 150 biotinylated proteins were identified at baseline condition, 53 of which are well‐known CUL4B interactants. After dopamine stimulation, 29 proteins disappeared and were replaced by 21 different protein interactants. The altered CUL4B interactants suggest that CUL4B regulates protein turnover and homeostasis in response to dopamine stimulation. Our results demonstrate the potential of this approach to identify novel CUL4B‐related molecules in respond to cellular stimuli, which may be applied to other types of signaling pathways.  相似文献   

11.
3,3′‐Diindolylmethane (DIM) has been studied for its putative anti‐cancer properties, especially against prostate cancer; however, its exact mechanism of action remains unclear. We recently provided preliminary data suggesting down‐regulation of uPA during B‐DIM (a clinically active DIM)‐induced inhibition of invasion and angiogenesis in prostate cancer cells. Since the expression and activation of uPA plays important role in tumorigenicity, and high endogenous levels of uPA and uPAR are found in advanced metastatic cancers, we investigated their role in B‐DIM‐mediated inhibition of prostate cancer cell growth and motility. Using PC3 cells, we found that B‐DIM treatment as well as the silencing of uPA and uPAR by siRNAs led to the inhibition of cell growth and motility. Conversely, over‐expression of uPA/uPAR in LNCaP and C4‐2B cells resulted in increased cell growth and motility, which was effectively inhibited by B‐DIM. Moreover, we found that uPA as well as uPAR induced the production of VEGF and MMP‐9, and that the down‐regulation of uPA/uPAR by siRNAs or B‐DIM treatment resulted in the inhibition of VEGF and MMP‐9 secretion which could be responsible for the observed inhibition of cell migration. Interestingly, silencing of uPA/uPAR led to decreased sensitivity to B‐DIM indicating important role of uPA/uPAR in B‐DIM‐mediated regulation of prostate cancer cell growth and migration. Our data suggest that chemopreventive and/or therapeutic activity of B‐DIM is in part due to down‐regulation of uPA–uPAR leading to reduced production of VEGF/MMP‐9 which ultimately leads to the inhibition of cell growth and migration of aggressive prostate cancer cells. J. Cell. Biochem. 107: 516–527, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
《Reproductive biology》2023,23(1):100704
Circular RNAs (circRNAs) have been reported to be implicated in the tumorigenesis and progression of ovarian cancer. Here, the study was designed to explore the activity of human circ_0021573 in ovarian cancer pathogenesis and its regulation through the competing endogenous RNA (ceRNA) crosstalk. Circ_0021573, microRNA (miR)? 936, and cullin 4B (CUL4B) were quantified by qRT-PCR and western blot. Cell proliferation ability was detected by XTT, 5-Ethynyl-2′-Deoxyuridine (EdU), and colony formation assays. Cell apoptosis, migration, and invasion were assessed by flow cytometry, wound-healing, and transwell assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-936 and circ_0021573 or CUL4B 3′UTR. Xenograft studies were applied to assess the role of circ_0021573 in tumor growth. Our data showed that circ_0021573 expression is enhanced in human ovarian cancer. Inhibition of circ_0021573 impedes cell proliferation, migration, and invasion and promotes apoptosis in vitro, as well as diminishes tumor growth in vivo. Mechanistically, circ_0021573 contains a miR-936 binding site, and miR-936 is a relevant mediator of circ_0021573 regulation. MiR-936 direct targets and inhibits CUL4B. MiR-936-mediated suppression of CUL4B hinders cell proliferation, migration, and invasion and accelerates apoptosis in vitro.. These data suggested that circ_0021573 might promote the malignant phenotypes of ovarian cancer cells by functioning as a ceRNA for miR-936 to induce CUL4B, which provided a promising target for the prevention and inhibition of ovarian cancer.  相似文献   

13.
It has been shown that the monomethylated cap structure plays important roles in nuclear events. The cap structure has been implicated in the enhancement of pre-mRNA splicing. More recently, this structure has also been suggested to facilitate RNA transport from the nucleus to the cytoplasm. We have previously identified and purified an 80kD Nuclear Cap Binding Protein (NCBP) from a HeLa cell nuclear extract, which could possibly mediate these nuclear activities. In this report, we describe cloning of complementary DNA (cDNA) encoding NCBP. The partial protein sequences of NCBP were determined, and the full-length cDNA of NCBP was isolated from HeLa cDNA libraries. This cDNA encoded an open reading frame of 790 amino acids with a calculated molecular mass of 91,734 daltons, which contained most of the determined protein sequences. However, the protein sequence had no significant homology to any known proteins. Transfection experiments demonstrated that the epitope-tagged NCBP, transiently expressed in HeLa cells, was localized exclusively in the nucleoplasm. Similar experiments using a truncated NCBP cDNA indicated that this nuclear localization activity is conferred by the N-terminal 70 amino-acid region.  相似文献   

14.
Controlled protein ubiquitination through E3 ubiquitin ligases and degradation via 26S proteasome machinery is required for orderly progression through cell cycle, chromatin remodeling, DNA repair, and development. Each cullin-dependent ubiquitin ligase (E3) complex can recruit various substrates for their degradation. Cullin 4A (CUL4A) and Cullin 4B (CUL4B) are members of cullin family proteins that mediate ubiquitin dependent proteolysis. Though, these two cul4 genes are functionally redundant, Cullin 4B is not a substitute for all the Cullin 4A functions. Published report has shown that CUL4A interacts with p53 and induces its decay. Although, CUL4A has been known to control several cellular processes, little is known about CUL4B functions. Therefore, in this study, we analyzed the role of CUL4B on p53 polyubiquitination. Our stable cell line and transient transfection studies show that CUL4B indeed interacts with p53 and induces its polyubiquitination. Importantly, both CUL4A and CUL4B overexpressing cells show almost equal levels of p53 polyubiquitination. Moreover, we observed an increased level of polyubiquitination on p53 in CUL4B overexpressing stable cell line upon treatment with siRNA specific for CUL4A indicating that CUL4B plays a vital role in p53 stability. In addition, we have observed the differential expression of CUL4B in various eukaryotic cell lines and mouse tissues suggesting the important role of CUL4B in various tissues. Together, these observations establish an important negative regulatory role of CUL4B on p53 stability.  相似文献   

15.
16.
Lung cancer is the leading cause of cancer death in both men and women. Tumor metastasis is an essential aspect of lung cancer progression. nm23-H1 is a metastasis suppressor gene. The molecular mechanism by which nm23-H1 suppresses the metastasis is still unclear. Here, we compared the gene expression profile of human large cell lung cancer cell line NL9980 by nm23-H1 gene silencing with that of negative control cells to comprehensively investigate nm23-H1-mediated changes in gene expression of NL9980 cells. Microarray assay revealed that expression of 733-known genes (1.9%, 733/38,500) were altered in response to nm23-H1 gene silencing, including 466 upregulated genes and 267 downregulated. real-time PCR assay of the expression changes indicated that 81.82% (45/55) of verified genes were consistent with that observed in microarray assay. The upregulated genes included MMP-1, -2, SNAI2, CXCL1, 2, 3, PAI-2, while the downregulated genes included cystatin B, TIMP-2, E-cadherin, centrin-2, all of which have been associated with tumor metastasis. Furthermore, we confirmed by Western blot that the expression of MMP-1 and -2 were significantly increased while that of cystatin B was dramatically decreased in NL9980-nm23-H1 silencing cells. The NL9980-nm23-H1 silencing cells exhibited significantly more S phase growth and invasive ability. Thus, silencing of nm23-H1 gene caused metastasis-related gene expression changes in lung cancer cells. The knockdown of nm23-H1 expression may change the lung cancer cells to a more invasive phenotype through alteration in the expression of a set of genes.  相似文献   

17.
Li X  Lu D  He F  Zhou H  Liu Q  Wang Y  Shao C  Gong Y 《The Journal of biological chemistry》2011,286(37):32344-32354
Cullin 4B (CUL4B) is a scaffold protein that assembles cullin-RING ubiquitin ligase (E3) complexes. Recent studies have revealed that germ-line mutations in CUL4B can cause mental retardation, short stature, and many other abnormalities in humans. Identifying specific CUL4B substrates will help to better understand the physiological functions of CUL4B. Here, we report the identification of peroxiredoxin III (PrxIII) as a novel substrate of the CUL4B ubiquitin ligase complex. Two-dimensional gel electrophoresis coupled with mass spectrometry showed that PrxIII was among the proteins up-regulated in cells after RNAi-mediated CUL4B depletion. The impaired degradation of PrxIII observed in CUL4B knockdown cells was confirmed by Western blot. We further demonstrated that DDB1 and ROC1 in the DDB1-CUL4B-ROC1 complex are also indispensable for the proteolysis of PrxIII. In addition, the degradation of PrxIII is independent of CUL4A, a cullin family member closely related to CUL4B. In vitro and in vivo ubiquitination assays revealed that CUL4B promoted the polyubiquitination of PrxIII. Furthermore, we observed a significant decrease in cellular reactive oxygen species (ROS) production in CUL4B-silenced cells, which was associated with increased resistance to hypoxia and H(2)O(2)-induced apoptosis. These findings are discussed with regard to the known function of PrxIII as a ROS scavenger and the high endogenous ROS levels required for neural stem cell proliferation. Together, our study has identified a specific target substrate of CUL4B ubiquitin ligase that may have significant implications for the pathogenesis observed in patients with mutations in CUL4B.  相似文献   

18.
19.
20.
SCIN (scinderin) is a calcium-dependent actin severing and capping protein. Homologue in zebrafish has been found to be related with cell death. In the present study, we found that SCIN is highly expressed in human lung cancer specimens. However, the role of SCIN in lung cancer has not yet been determined. To investigate the function of SCIN in lung carcinoma cells, we took advantage of lentivirus-mediated RNA interference (RNAi) to knockdown SCIN expression in two lung carcinoma cell lines A549 and H1299. Silencing of SCIN significantly inhibited the proliferation and colony formation ability of both cell lines in vitro. Moreover, flow cytometry analysis showed that knockdown of SCIN led to G0/G1 phase cell cycle arrest as well as an excess accumulation of cells in the sub-G1 phase. Furthermore, depletion of SCIN resulted in a significant increase in Cyclin B1, p21 and PARP expression, and a little decrease in Cyclin D1 expression. These results suggest that SCIN plays an important role in lung carcinoma cell proliferation, and lentivirus-mediated silencing of SCIN might be a potential therapeutic approach for the treatment of lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号