首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Proper function of cell signaling pathways is dependent upon regulated membrane trafficking events that lead to the endocytosis, recycling, and degradation of cell surface receptors. The endosomal complexes required for transport (ESCRT) genes play a critical role in the sorting of ubiquitinated cell surface proteins. CHMP2BIntron5, a truncated form of a human ESCRT‐III protein, was discovered in a Danish family afflicted by a hereditary form of frontotemporal dementia (FTD). Although the mechanism by which the CHMP2B mutation in this family causes FTD is unknown, the resulting protein has been shown to disrupt normal endosomal–lysosomal pathway function and leads to aberrant regulation of signaling pathways. Here we have misexpressed CHMP2BIntron5 in the developing Drosophila external sensory (ES) organ lineage and demonstrate that it is capable of altering cell fates. Each of the cell fate transformations seen is compatible with an increase in Notch signaling. Furthermore, this interpretation is supported by evidence that expression of CHMP2BIntron5 in the notum environment is capable of raising the levels of Notch signaling. As such, these results add to a growing body of evidence that CHMP2BIntron5 can act rapidly to disrupt normal cellular function via the misregulation of critical cell surface receptor function.  相似文献   

4.
赵凯  卫涛涛 《生命科学》2011,(11):1063-1068
在特定条件下,包括活性氧、鞘氨醇、细胞凋亡效应因子Bax等在内的多种刺激因子均可诱发溶酶体膜通透,之后溶酶体内含的蛋白酶(如组织蛋白酶等)及其他水解酶从溶酶体释放至胞浆中,通过剪切效应分子、激活包括凋亡酶在内的其他水解酶而启动细胞凋亡程序的执行。简要概括了引发溶酶体膜通透的可能机制及溶酶体参与细胞凋亡的主要途径。  相似文献   

5.
6.
One of the colors of mink is Aleutian (aa)—a specific gun‐metal gray pigmentation of the fur—commonly used in combination with other color loci to generate popular colors such as Violet (aammpp) and Sapphire (aapp). The Aleutian color allele is a manifestation of mink Chédiak‐Higashi syndrome (CHS), which has been described in humans and several other species. As with forms of CHS in other species, we report that the mink CHS is linked to the lysosomal trafficking regulator ( LYST ) gene. Furthermore, we have identified a base deletion (c.9468delC) in exon 40 of LYST, which causes a frameshift and virtually terminates the LYST product prematurely (p.Leu3156Phefs*37). We investigated the blood parameters of three wild‐type mink and three CHS mink. No difference in the platelet number between the two groups was observed, but an accumulation of platelets between the groups appears different when collagen is used as a coagulant. Microscopic analysis of peripheral blood indicates giant inclusions in the neutrophils of the Aleutian mink types. Molecular findings at the LYST locus enable the development of genetic tests for analyzing the color selection in American mink.  相似文献   

7.
Aspartylglucosaminuria (AGU) is an inherited disease caused by mutations in a lysosomal amidase called aspartylglucosaminidase (AGA) or glycosylasparaginase (GA). This disorder results in an accumulation of glycoasparagines in the lysosomes of virtually all cell types, with severe clinical symptoms affecting the central nervous system, skeletal abnormalities, and connective tissue lesions. GA is synthesized as a single‐chain precursor that requires an intramolecular autoprocessing to form a mature amidase. Previously, we showed that a Canadian AGU mutation disrupts this obligatory intramolecular autoprocessing with the enzyme trapped as an inactive precursor. Here, we report biochemical and structural characterization of a model enzyme corresponding to a new American AGU allele, the T99K variant. Unlike other variants with known 3D structures, this T99K model enzyme still has autoprocessing capacity to generate a mature form. However, its amidase activity to digest glycoasparagines remains low, consistent with its association with AGU. We have determined a 1.5‐Å‐resolution structure of this new AGU model enzyme and built an enzyme–substrate complex to provide a structural basis to analyze the negative effects of the T99K point mutation on KM and kcat of the amidase. It appears that a “molecular clamp” capable of fixing local disorders at the dimer interface might be able to rescue the deficiency of this new AGU variant.  相似文献   

8.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   

9.
10.
Aspartylglycosaminuria (AGU) is caused by deficient enzymatic activity of glycosylasparaginase (GA). The disease is characterized by accumulation of aspartylglucosamine (GlcNAc-Asn) and other glycoasparagines in tissues and body fluids of AGU patients and in an AGU mouse model. In the current study, we characterized a glycoasparagine carrying the tetrasaccharide moiety of alpha-D-Man-(1-->6)-beta-D-Man-(1-->4)-beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->N)-Asn (Man2GlcNAc2-Asn) in urine of an AGU patient and also in the tissues of the AGU mouse model. Quantitative analysis demonstrated a massive accumulation of the compound especially in nonneuronal tissues of the AGU mice, in which the levels of Man2GlcNAc2-Asn were typically 30-87% of those of GlcNAc-Asn. The highest level of Man2GlcNAc2-Asn was found in the liver, spleen, and heart tissues of the AGU mice, the respective amounts being 87%, 76%, and 57% of the GlcNAc-Asn levels. In the brain tissue of AGU mice the Man2GlcNAc2-Asn storage was only 9% of that of GlcNAc-Asn. In contrast to GlcNAc-Asn, the storage of Man2GlcNAc2-Asn markedly increased in the liver and spleen tissues of AGU mice as they grew older. Enzyme replacement therapy with glycosylasparaginase for 3.5 weeks reduced the amount of Man2GlcNAc2-Asn by 66-97% in nonneuronal tissues, but only by 13% in the brain tissue of the AGU mice. In conclusion, there is evidence for a role for storage of glycoasparagines other than aspartylglucosamine in the pathogenesis of AGU, and this possibility should be taken into consideration in the treatment of the disease.  相似文献   

11.
12.
13.
14.
15.
The aim of this study was to provide evidence on the modulation of lysosomal enzymes in terms of both gene expression and enzymatic activity during follicle maturation. For this purpose three lysosomal enzymes, cathepsins B, D, and L, were studied in relation to yolk formation and degradation, during the main phases of ovarian follicle growth in the pelagophil species, the sea bream Sparus aurata. Specific attention was focused on the gene expression quantification method, on the assay of enzymatic activities, and on the relationship between the proteolytic cleavage of yolk proteins (YPs), cathepsin gene expression and cathepsin activities. For the gene expression study, the cathepsins B-like and L-like mRNAs were isolated and partially or fully characterized, respectively; the sequences were used as design specific primers for the quantification of cathepsin gene expression by real-time PCR, in follicles at different stages of maturation. The enzymatic assays for cathepsins B, D, and L were optimized in terms of specificity, sensitivity and reliability, using specific substrates and inhibitors. In ovulated eggs, the lipovitellin I (LV I) was degraded and the changes in electrophoretic pattern were preceded by an increase in the activity of a cysteine proteinase, cathepsin L, and its mRNA. Cathepsin B did not appear to be involved in YP changes during the final maturation stage.  相似文献   

16.
The lysosomal membrane was thought for a long time to primarily act as a physical barrier separating the luminal acidic milieu from the cytoplasmic environment. Meanwhile, it has been realized that unique lysosomal membranes play essential roles in a number of cellular events ranging from phagocytosis, autophagy, cell death, virus infection to membrane repair. This review provides an overview about the most interesting emerging functions of lysosomal membrane proteins and how they contribute to health and disease. Their importance is exemplified by their role in acidification, transport of metabolites and ions across the membrane, intracellular transport of hydrolases and the regulation of membrane fusion events. Studies in patient cells, non‐mammalian model organisms and knockout mice contributed to our understanding of how the different lysosomal membrane proteins affect cellular homeostasis, developmental processes as well as tissue functions. Because these proteins are central for the biogenesis of this compartment they are also considered as attractive targets to modulate the lysosomal machinery in cases where impaired lysosomal degradation leads to cellular pathologies. We are only beginning to understand the complex composition and function of these proteins which are tightly linked to processes occurring throughout the endocytic and biosynthetic pathways.   相似文献   

17.
The 215-kd phosphomannosyl receptor is involved in the transport of newly synthesized acid hydrolases to lysosomes and also mediates the pinocytosis of lysosomal enzymes by fibroblasts in culture. Recycling of receptors to the sorting sites is an integral part of both these processes. In this report, we describe the inhibition in human fibroblasts of both functions of the phosphomannosyl receptor by a rabbit antiserum to the bovine liver receptor. This inhibition cannot be completely accounted for by inhibition of ligand-receptor interaction. Rather the antibody appears to cross-link receptors and cause a removal of receptors from the sorting sites (plasma membrane and Golgi apparatus) and their accumulation in a compartment from which they do not recycle. Removal of receptors from the recycling pool by antibody is irreversible, and return of receptors requires synthesis of new protein. Degradation of "trapped receptors" is enhanced (t1/2 = 7.5 hr), but much more gradual than their removal from the functional receptor pool (t1/2 = 30 min).  相似文献   

18.
Niemann‐Pick disease type C is a complex lysosomal storage disorder caused by mutations in either the NPC1 or NPC2 genes that is characterized at the cellular level by the storage of multiple lipids, defective lysosomal calcium homeostasis and unique trafficking defects. We review the potential role of each of the individual storage lipids in initiating the pathogenic cascade and propose a model of NPC1 and NPC2 function based on the current knowledge  相似文献   

19.
LGP85 is a lysosomal membrane protein possessing a type III topology and is also known as a member of the CD36 superfamily of proteins, such as CD36 and the scavenger-receptor BI (SR-BI). We have recently demonstrated that overexpression of LGP85 in various mammalian cell lines causes the enlargement of endosomal/lysosomal compartments (ELCs). Using chimeras and deletion mutants, we show here that the lumenal region of LGP85 is necessary, but not sufficient, for the development of ELCs. Effective formation of enlarged ELC was largely dependent on the presence of a preceding NH2-terminal transmembrane segment. Analyses of deletion mutants within the lumenal domain further revealed a requirement of the NH2-terminal transmembrane proximal lumenal region, with high sequence similarity with SR-BI for the enlargement of ELC. These results suggest that an interaction of the NH2-terminal transmembrane proximal lumenal domain of LGP85 with the inner leaflet of endosomal/lysosomal membranes through the connection with the transmembrane domain is an essential determinant for the regulation of endosomal/lysosomal membrane traffic. Interestingly, although the NH2-terminal transmembrane domain itself was not sufficient for the enlargement of ELCs, it appeared to be required for direct targeting of LGP85 from the trans -Golgi network to late endosomes/lysosomes. Taken together, these results indicate the involvement of distinct domain of LGP85 in the targeting to, and biogenesis and maintenance of, ELC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号