首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The FA (Fanconi anaemia) FANCD2 protein is pivotal in the cellular response to DNA interstrand cross‐links. Establishing cells expressing exogenous FANCD2 has proven to be difficult compared with other DNA repair genes. We find that in transformed normal human fibroblasts, exogenous nuclear expression of FANCD2 induces apoptosis, dependent specifically on exons 10–13. This is the same region required for interaction with the histone acetyltransferase, Tip60. Deletion of exons 10–13 from FANCD2 N‐terminal constructs (nucleotides 1–1100) eliminates the binary interaction with Tip60 and the cellular apoptotic response; moreover, cells can stably express FANCD2 at high levels if Tip60 is depleted. The results indicate that FANCD2‐sponsored apoptosis requires an interaction with Tip60 and depends on Tip60.  相似文献   

3.
Many tumor suppressors play an important role in the DNA damage pathway. Zinc finger protein 668 (ZNF668) has recently been identified as one of the potential tumor suppressors in breast cancer, but its function in DNA damage response is unknown. Herein, we report that ZNF668 is a regulator of DNA repair. ZNF668 knockdown impairs cell survival after DNA damage without affecting the ATM/ATR DNA-damage signaling cascade. However, recruitment of repair proteins to DNA lesions is decreased. In response to IR, ZNF668 knockdown reduces Tip60-H2AX interaction and impairs IR-induced histone H2AX hyperacetylation, thus impairing chromatin relaxation. Impaired chromatin relaxation causes decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after IR. In addition, ZNF668 knockdown decreased RPA phosphorylation and its recruitment to DNA damage foci in response to UV. In both IR and UV damage responses, chromatin relaxation counteracted the impaired loading of repair proteins and DNA repair defects in ZNF668-deficient U2OS cells, indicating that impeded chromatin accessibility at sites of DNA breaks caused the DNA repair defects observed in the absence of ZNF668. Our findings suggest that ZNF668 is a key molecule that links chromatin relaxation with DNA damage response in DNA repair control.  相似文献   

4.
5.
《Molecular cell》2022,82(24):4627-4646.e14
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
  相似文献   

6.
《遗传学报》2021,48(7):618-630
Epigenetic regulators have been implicated in tumorigenesis of many types of cancer; however, their roles in endothelial cell cancers such as canine hemangiosarcoma(HSA) have not been studied. In this study, we find that lysine-specific demethylase 2 b(KDM2 B) is highly expressed in HSA cell lines compared with normal canine endothelial cells. Silencing of KDM2 B in HSA cells results in increased cell death in vitro compared with the scramble control by inducing apoptosis through the inactivation of the DNA repair pathways and accumulation of DNA damage. Similarly, doxycycline-induced KDM2 B silencing in tumor xenografts results in decreased tumor sizes compared with the control. Furthermore, KDM2 B is also highly expressed in clinical cases of HSA. We hypothesize that pharmacological KDM2 B inhibition can also induce HSA cell death and can be used as an alternative treatment for HSA. We treat HSA cells with GSK-J4, a histone demethylase inhibitor, and find that GSK-J4 treatment also induces apoptosis and cell death. In addition, GSK-J4 treatment decreases tumor size. Therefore, we demonstrate that KDM2 B acts as an oncogene in HSA by enhancing the DNA damage response. Moreover, we show that histone demethylase inhibitor GSK-J4 can be used as a therapeutic alternative to doxorubicin for HSA treatment.  相似文献   

7.
乙酰基转移酶Tip60(KAT5)的功能研究进展   总被引:1,自引:0,他引:1  
Tip60(KAT5)属于MYST乙酰基转移酶家族,同时它也是进化上非常保守的Nu A4蛋白质复合体的重要成员.过去十几年的研究证实,Tip60一方面可以作为转录调控因子结合核受体(如雄激素受体,AR)或c-MYC、AICD/Fe65、NCo R、E2F等转录因子来激活或抑制下游基因的表达,另一方面,KAT5可以乙酰化一系列蛋白来调控这些蛋白质的活性及稳定性,进而调控DNA损伤修复反应、细胞周期进程、细胞周期检查点的激活、凋亡、代谢及自噬等重要细胞功能.此外,Tip60在肿瘤的发生发展及转移、胚胎发育等过程中也发挥着至关重要的作用.本文将主要对Tip60近几年的研究进展做一个综述.  相似文献   

8.
Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a “binary death signal” to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14ARF inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.  相似文献   

9.
Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a “binary death signal” to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14ARF inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.  相似文献   

10.
The molecular mechanisms controlling post-translational modifications of p21 have been pursued assiduously in recent years. Here, utilizing mass-spectrometry analysis and site-specific acetyl-p21 antibody, two lysine residues of p21, located at amino-acid sites 161 and 163, were identified as Tip60-mediated acetylation targets for the first time. Detection of adriamycin-induced p21 acetylation, which disappeared after Tip60 depletion with concomitant destabilization of p21 and disruption of G1 arrest, suggested that Tip60-mediated p21 acetylation is necessary for DNA damage-induced cell-cycle regulation. The ability of 2KQ, a mimetic of acetylated p21, to induce cell-cycle arrest and senescence was significantly enhanced in p21 null MEFs compared with those of cells expressing wild-type p21. Together, these observations demonstrate that Tip60-mediated p21 acetylation is a novel and essential regulatory process required for p21-dependent DNA damage-induced cell-cycle arrest.  相似文献   

11.
Castration-resistant prostate cancer (CRPC) causes most of the deaths in patients with prostate cancer (PCa). The androgen receptor (AR) axis plays an important role in castration resistance. Emerging studies showed that the lysine demethylase KDM4B is a key molecule in AR signaling and turnover, and autophagy plays an important role in CRPC. However, little is known about whether KDM4B promotes CRPC progression by regulating autophagy. Here we used an androgen-independent LNCaP (LNCaP-AI) cell line to assay aberrant KDM4B expression using qPCR and western blot analysis and investigated the function of KDM4B in regulating cell proliferation. We found that KDM4B was markedly increased in LNCaP-AI cells compared with LNCaP cells. KDM4B level was significantly correlated with the Gleason score in PCa tissues. In vitro, KDM4B overexpression in CRPC cells promoted cell proliferation, whereas knockdown of KDM4B significantly inhibited cell proliferation. Upregulated KDM4B contributed to activate Wnt/β-catenin signaling and autophagy. Moreover, KDM4B activated autophagy by regulating the Wnt/β-catenin signaling. Finally, we demonstrated that autophagy inhibition attenuated KDM4B-induced CRPC cell proliferation. Our results provided novel insights into the function of KDM4B-driven CRPC development and indicated that KDM4B may be served as a potential target for CRPC therapy.  相似文献   

12.
Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.  相似文献   

13.
14.
15.
Tip60 is a key member of the MYST family of histone acetyltransferases and involved in a broad spectrum of cellular pathways and disease conditions. So far, small molecule inhibitors of Tip60 and other members of MYST HATs are rarely reported. To discover new small molecule inhibitors of Tip60 as mechanistic tools for functional study and as chemical leads for therapeutic development, we performed virtual screening using the crystal structure of Esa1 (the yeast homolog of Tip60) on a small molecule library database. Radioactive acetylation assays were carried out to further evaluate the virtual screen hits. Several compounds with new structural scaffolds were identified with micromolar inhibition potency for Tip60 from the biochemical studies. Further, computer modeling and kinetic assays suggest that these molecules target the acetyl-CoA binding site in Tip60. These new inhibitors provide valuable chemical hits to develop further potent inhibitors for the MYST HATs.  相似文献   

16.
Emerging evidence has demonstrated that the aberrant expression of histone-modifying enzymes such as histone demethylases contributes to gastric carcinogenesis and progression. The role of KDM4B in cancer progression has been gradually revealed. However, the underlying mechanisms regulating gastric cancer metastasis of KDM4B remain unclear. In the present study we determined KDM4B expression in gastric cancer and its biologic function in vitro and in vivo. We found that KDM4B expression was significantly increased in most gastric cancer tissues compared with the adjacent normal tissues. Upregulated expression of KDM4B in human gastric cancer was correlated with poor prognosis. In vitro, KDM4B overexpression in AGS cells promoted cell invasion, whereas knockdown of KDM4B inhibited cell invasion. Furthermore, KDM4B overexpression also promoted tumor metastasis in vivo. Mechanistically, KDM4B upregulated miR-125b expression and activated Wnt signaling pathway. More important, miR-125b partially mediated KDM4B-induced activation of Wnt signaling. Finally, we demonstrated that KDM4B promoted gastric cancer cell invasion in vitro and cancer metastasis in vivo, at least in part, by upregulating miR-125b expression. These data provided novel insights on the role of KDM4B-driven gastric cancer metastasis and indicated that KDM4B may be served as a potential target for gastric cancer.  相似文献   

17.
18.
Osteosarcoma is a bone tumor that frequently develops during adolescence. 2‐Methoxyestradiol (2‐ME), a naturally occurring metabolite of 17β‐estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2‐ME actions, we studied the effect of 2‐ME treatment on OPG gene expression in human osteosarcoma cells. 2‐ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2‐ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3‐, 1.9‐, 2.8‐, and 2.5‐fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2‐ME treatment. The effect of 2‐ME on osteosarcoma cells was ligand‐specific as parent estrogen, 17β‐estradiol and a tumorigenic estrogen metabolite, 16α‐hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co‐treating osteosarcoma cells with OPG protein did not further enhance 2‐ME‐mediated anti‐tumor effects. OPG‐released in 2‐ME‐treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2‐ME‐mediated anti‐proliferative effects in osteosarcoma cells, but rather participates in anti‐resorptive functions of 2‐ME in bone tumor environment. J. Cell. Biochem. 109: 950–956, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Periodontal disease (PD) afflicts 46% of Americans with no effective adjunctive therapies available. While most pharmacotherapy for PD targets bacteria, the host immune response is responsible for driving tissue damage and bone loss in severe disease. Herein, we establish that the histone demethylase KDM4B is a potential drug target for the treatment of PD. Immunohistochemical staining of diseased periodontal epithelium revealed an increased abundance of KDM4B that correlates with inflammation. In murine calvarial sections exposed to Aggregatibacter actinomycetemcomitans lipopolysaccharide (Aa-LPS), immunohistochemical staining revealed a significant increase in KDM4B protein expression. The 8-hydroxyquinoline ML324 is known to inhibit the related demethylase KDM4E in vitro, but has not been evaluated against any other targets. Our studies indicate that ML324 also inhibits KDM4B (IC50: 4.9 μM), and decreases the pro-inflammatory cytokine response to an Aa-LPS challenge in vitro. Our results suggest that KDM4B inhibition-induced immunosuppression works indirectly, requiring new protein synthesis. In addition, fluorescence-stained macrophages exhibited a significant decrease in global monomethyl histone 3 lysine 4 (H3K4me) levels following an Aa-LPS challenge that was prevented by KDM4B inhibition, suggesting this effect is produced through KDM1A-mediated demethylation of H3K4. Finally, ML324 inhibition of KDM4B in osteoclast progenitors produced a significant reduction in Aa-LPS-induced osteoclastogenesis. These data link histone methylation with host immune response to bacterial pathogens in PD, and suggest a previously unreported, alternative mechanism for epigenetic control of the host inflammatory environment. As such, KDM4B represents a new therapeutic target for treating hyper-inflammatory diseases that result in bone destruction.  相似文献   

20.
Definitive endoderm differentiation is crucial for generating respiratory and gastrointestinal organs including pancreas and liver. However, whether epigenetic regulation contributes to this process is unknown. Here, we show that the H3K27me3 demethylases KDM6A and KDM6B play an important role in endoderm differentiation from human ESCs. Knockdown of KDM6A or KDM6B impairs endoderm differentiation, which can be rescued by sequential treatment with WNT agonist and antagonist. KDM6A and KDM6B contribute to the activation of WNT3 and DKK1 at different differentiation stages when WNT3 and DKK1 are required for mesendoderm and definitive endoderm differentiation, respectively. Our study not only uncovers an important role of the H3K27me3 demethylases in definitive endoderm differentiation, but also reveals that they achieve this through modulating the WNT signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号