首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole genome duplication, a prevalent force of evolution in plants, results in massive genome restructuring in different organisms. Roles of the resultant duplicated genes are poorly understood both functionally and evolutionarily. In the present study, differentially expressed ethylene responsive factors(GhERF1 s), anchored on Chr-A07 and Chr-D07 were isolated from a high-yielding cotton hybrid(XZM2)and its parents. The GhERF1 was located in the B3 subgroup of the ethylene responsive factors subfamily involved in conferring tolerance to abiotic stress Nucleotide sequence analysis of 524 diverse accessions together with quantitative real-time polymerase chain reaction analysis, elucidated that de-functionalization of GhERF1-7 A occurred due to one base insertion following formation of the allotetraploid cotton. Our quantitative trait loci and association mapping analyses highlighted a role for GhERF1-7 A in conferring high boll number per plant in modern cotton cultivars. Overexpression of GhERF1-7 A in transgenic Arabidopsis resulted in a substantial increase in the number of siliques and total seed yield. Neo-functionalization of GhERF1-7 A was also observed in modern cultivars rather than in races and/or landraces, further supporting its role in the development of high-yielding cotton cultivars. Both de-and neofunctionalization occurred in one of the duplicate genes,thus providing new genomic insight into the evolution of allotetraploid cotton species.  相似文献   

2.
3.
4.
利用SSR标记技术研究棉属A、D染色体组的进化   总被引:14,自引:0,他引:14  
郭旺珍  王凯  张天真 《遗传学报》2003,30(2):183-188
利用SSR分子标记技术,对棉属A、D染色体二倍体及四倍体代表棉种进行了遗传多样性分析。供试的10个二倍体代表棉种间遗传多态性丰富,分子聚类结果与Fryxell棉属分类结果相同。分子水平上进一步揭示出属于D染色体组的拟似棉与其他D染色体组棉种的相似系数最低,A,D染色体组间相似系数很高,该结果支持拟全民族似棉是D染色体组最原始棉种,棉属不同染色体组是共同起源,单元进化的理论,利用栽培的异源四倍体棉种不太适于研究棉属A、D染色体组的进化。  相似文献   

5.
Brown fibre cotton is an environmental‐friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine‐mapped the brown fibre region, Lc1, and dissected it into 2 loci, qBF‐A07‐1 and qBF‐A07‐2. The qBF‐A07‐1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF‐A07‐1 and qBF‐A07‐2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF‐A07‐1 and qBF‐A07‐2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome‐wide association study (GWAS) and found that qBF‐A07‐2 negatively affects fibre yield and quality through an epistatic interaction with qBF‐A07‐1. This study sheds light on the genetics of fibre colour and lint‐related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.  相似文献   

6.
7.
8.
9.
10.
Li Q  Jin X  Zhu YX 《遗传学报》2012,39(7):351-360
The plant genome possesses a large number of microRNAs(miRNAs)mainly 21-24 nucleotides in length.They play a vital role in regulation of target gene expression at various stages throughout the whole plant life cycle.Here we sequenced and analyzed~10 million non-coding RNAs(ncRNAs)derived from fiber tissue of the allotetraploid cotton(Gossypium hirsutum)1 days post-anthesis using ncRNA-seq technology.In terms of distinct reads,24 nt ncRNA is by far the dominant species,followed by 21 nt and 23 nt ncRNAs. Using ab initio prediction,we identified and characterized a total of 562 candidate miRNA gene loci on the recently assembled D5 genome of the diploid cotton G.raimondii.Of all the 562 predicted miRNAs,22 were previously discovered in cotton species and 187 had sequence conservation and homology to homologous miRNAs of other plant species.Nucleotide bias analysis showed that the 9th and 1 st positions were significantly conserved among different types of miRNA genes.Among the 463 putative miRNA target genes,most significant up/down-regulation occurred in 10-20 days post-anthesis,indicating that miRNAs played an important role during the elongation and secondary cell wall synthesis stages of cotton fiber development.The discovery of new miRNA genes will help understand the mechanisms of miRNA generation and regulation in cotton.  相似文献   

11.

Background

High-yielding cultivars of rice (Oryza sativa L.) have been developed in Japan from crosses between overseas indica and domestic japonica cultivars. Recently, next-generation sequencing technology and high-throughput genotyping systems have shown many single-nucleotide polymorphisms (SNPs) that are proving useful for detailed analysis of genome composition. These SNPs can be used in genome-wide association studies to detect candidate genome regions associated with economically important traits. In this study, we used a custom SNP set to identify introgressed chromosomal regions in a set of high-yielding Japanese rice cultivars, and we performed an association study to identify genome regions associated with yield.

Results

An informative set of 1152 SNPs was established by screening 14 high-yielding or primary ancestral cultivars for 5760 validated SNPs. Analysis of the population structure of high-yielding cultivars showed three genome types: japonica-type, indica-type and a mixture of the two. SNP allele frequencies showed several regions derived predominantly from one of the two parental genome types. Distinct regions skewed for the presence of parental alleles were observed on chromosomes 1, 2, 7, 8, 11 and 12 (indica) and on chromosomes 1, 2 and 6 (japonica). A possible relationship between these introgressed regions and six yield traits (blast susceptibility, heading date, length of unhusked seeds, number of panicles, surface area of unhusked seeds and 1000-grain weight) was detected in eight genome regions dominated by alleles of one parental origin. Two of these regions were near Ghd7, a heading date locus, and Pi-ta, a blast resistance locus. The allele types (i.e., japonica or indica) of significant SNPs coincided with those previously reported for candidate genes Ghd7 and Pi-ta.

Conclusions

Introgression breeding is an established strategy for the accumulation of QTLs and genes controlling high yield. Our custom SNP set is an effective tool for the identification of introgressed genome regions from a particular genetic background. This study demonstrates that changes in genome structure occurred during artificial selection for high yield, and provides information on several genomic regions associated with yield performance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-346) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
Q Xu  G Xiong  P Li  F He  Y Huang  K Wang  Z Li  J Hua 《PloS one》2012,7(8):e37128

Background

Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time.

Methodology/Principal Findings

The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA).

Conclusion

Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids.  相似文献   

14.
15.
Upland cotton (Gossypium hirsutum L., 2n = 52, AADD) is an allotetraploid, therefore the discovery of single nucleotide polymorphism (SNP) markers is difficult. The recent emergence of genome complexity reduction technologies based on the next-generation sequencing (NGS) platform has greatly expedited SNP discovery in crops with highly repetitive and complex genomes. Here we applied restriction-site associated DNA (RAD) sequencing technology for de novo SNP discovery in allotetraploid cotton. We identified 21,109 SNPs between the two parents and used these for genotyping of 161 recombinant inbred lines (RILs). Finally, a high dense linkage map comprising 4,153 loci over 3500-cM was developed based on the previous result. Using this map quantitative trait locus (QTLs) conferring fiber strength and Verticillium Wilt (VW) resistance were mapped to a more accurate region in comparison to the 1576-cM interval determined using the simple sequence repeat (SSR) genetic map. This suggests that the newly constructed map has more power and resolution than the previous SSR map. It will pave the way for the rapid identification of the marker-assisted selection in cotton breeding and cloning of QTL of interest traits.  相似文献   

16.
BackgroundSNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes.ResultsWe construct an ultra-dense inter-specific genetic map comprising 4,999,048 SNP loci distributed unevenly in 26 allotetraploid cotton linkage groups and covering 4,042 cM. The map is used to order tetraploid cotton genome scaffolds for accurate assembly of G. hirsutum acc. TM-1. Recombination rates and hotspots are identified across the cotton genome by comparing the assembled draft sequence and the genetic map. Using this map, genome rearrangements and centromeric regions are identified in tetraploid cotton by combining information from the publicly-available G. raimondii genome with fluorescent in situ hybridization analysis.ConclusionsWe report the genotype-by-sequencing method used to identify millions of SNPs between G. hirsutum and G. barbadense. We construct and use an ultra-dense SNP map to correct sequence mis-assemblies, merge scaffolds into pseudomolecules corresponding to chromosomes, detect genome rearrangements, and identify centromeric regions in allotetraploid cottons. We find that the centromeric retro-element sequence of tetraploid cotton derived from the D subgenome progenitor might have invaded the A subgenome centromeres after allotetrapolyploid formation. This study serves as a valuable genomic resource for genetic research and breeding of cotton.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0678-1) contains supplementary material, which is available to authorized users.  相似文献   

17.
Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids   总被引:16,自引:0,他引:16  
Wang J  Tian L  Madlung A  Lee HS  Chen M  Lee JJ  Watson B  Kagochi T  Comai L  Chen ZJ 《Genetics》2004,167(4):1961-1973
Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution.  相似文献   

18.
Xu WL  Wang XL  Wang H  Li XB 《Gene》2007,389(1):27-35
The translation elongation factor 1A, eEF1A, plays an important role in protein synthesis, catalyzing the binding of aminoacyl-tRNA to the A-site of the ribosome by a GTP-dependent mechanism. To investigate the role of eEF1A for protein synthesis in cotton fiber development, nine different cDNA clones encoding eukaryotic translation elongation factor 1A were isolated from cotton (Gossypium hirsutum) fiber cDNA libraries. The isolated genes (cDNAs) were designated cotton elongation factor 1A gene GhEF1A1, GhEF1A2, GhEF1A3, GhEF1A4, GhEF1A5, GhEF1A6, GhEF1A7, GhEF1A8, GhEF1A9, respectively. They share high sequence homology at nucleotide level (71-99% identity) in the coding region and at amino acid level (96-99% identity) among each other. Phylogenetic analysis demonstrated that the nine GhEF1A genes can be divided into 5-6 subfamilies, indicating the divergence occurred in structures of the genes as well as the deduced proteins during evolution. Real-time quantitative RT-PCR analysis revealed that GhEF1A genes are differentially expressed in different tissues/organs. Of the nine GhEF1A genes, five are expressed at relatively high levels in young fibers. Further analysis indicated that expressions of the GhEF1As in fiber are highly developmental-regulated, suggesting that protein biosynthesis is very active at the early fiber elongation.  相似文献   

19.
Naringenin, the biochemical precursor for predominant flavonoids in grasses, provides protection against UV damage, pathogen infection and insect feeding. To identify previously unknown loci influencing naringenin accumulation in rice (Oryza sativa), recombinant inbred lines derived from the Nipponbare and IR64 cultivars were used to map a quantitative trait locus (QTL) for naringenin abundance to a region of 50 genes on rice chromosome 7. Examination of candidate genes in the QTL confidence interval identified four predicted uridine diphosphate-dependent glucosyltransferases (Os07g31960, Os07g32010, Os07g32020 and Os07g32060). In vitro assays demonstrated that one of these genes, Os07g32020 (UGT707A3), encodes a glucosyltransferase that converts naringenin and uridine diphosphate-glucose to naringenin-7-O-β-d -glucoside. The function of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which accumulated more naringenin and less naringenin-7-O-β-d -glucoside and apigenin-7-O-β-d -glucoside than wild-type Nipponbare. Expression of Os12g13800, which encodes a naringenin 7-O-methyltransferase that produces sakuranetin, was elevated in the mutant lines after treatment with methyl jasmonate and insect pests, Spodoptera litura (cotton leafworm), Oxya hyla intricata (rice grasshopper) and Nilaparvata lugens (brown planthopper), leading to a higher accumulation of sakuranetin. Feeding damage from O. hyla intricata and N. lugens was reduced on the Os07g32020 mutant lines relative to Nipponbare. Modification of the Os07g32020 gene could be used to increase the production of naringenin and sakuranetin rice flavonoids in a more targeted manner. These findings may open up new opportunities for selective breeding of this important rice metabolic trait.  相似文献   

20.
Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton (Gossypium hirsutum L.) and Pima or Egyptian cotton (G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication after polyploidization. To analyze cotton AD genomes and dissect agronomic traits, we have developed a genetic map in an F2 population derived from interspecific hybrids between G. hirsutum L. cv. Acala-44 and G. barbadense L. cv. Pima S-7. A total of 392 genetic loci, including 333 amplified fragment length polymorphisms (AFLPs), 47 simple sequence repeats (SSRs), and 12 restriction fragment length polymorphisms (RFLPs), were mapped in 42 linkage groups, which span 3,287 cM and cover approximately 70% of the genome. Using chromosomal aneuploid interspecific hybrids and a set of 29 RFLP and SSR framework markers, we assigned 19 linkage groups involving 223 loci to 12 chromosomes. Comparing four pairs of homoeologous chromosomes, we found that with one exception linkage distances in the A-subgenome chromosomes were larger than those in their D-subgenome homoeologues, reflecting higher recombination frequencies and/or larger chromosomes in the A subgenome. Segregation distortion was observed in 30 out of 392 loci mapped in cotton. Moreover, approximately 29% of the RFLPs behaved as dominant loci, which may result from rapid genomic changes. The cotton genetic map was used for quantitative trait loci (QTL) analysis using composite interval mapping and permutation tests. We detected seven QTLs for six fiber-related traits; five of these were distributed among A-subgenome chromosomes, the genome donor of fiber traits. The detection of QTLs in both the A subgenome in this study and the D subgenome in a previous study suggests that fiber-related traits are controlled by the genes in homoeologous genomes, which are subjected to selection and domestication. Some chromosomes contain clusters of QTLs and presumably contribute to the large amount of phenotypic variation that is present for fiber-related traits.Communicated by J. Dvorak  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号