首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Evidence is accumulating that cellular lipid binding proteins are playing central roles in cellular lipid uptake and metabolism. Membrane-associated fatty acid-binding proteins putatively function in protein-mediated transmembrane transport of fatty acids, likely coexisting with passive diffusional uptake. The intracellular trafficking of fatty acids, bile acids, and other lipid ligands, may involve their interaction with specific membrane or protein targets, which are unique properties of some but not of all cytoplasmic lipid binding proteins. Recent studies indicate that these proteins not only facilitate but also regulate cellular lipid utilization. For instance, muscle fatty acid uptake is subject to short-term regulation by translocation of fatty acid translocase (FAT)/CD36 from intracellular storage sites to the plasma membrane, and liver-type cytoplasmic fatty acid-binding protein (L-FABPc) functions in long-term, ligand-induced regulation of gene expression by directly interacting with nuclear receptors. Therefore, the properties of the lipid-protein complex, rather than those of the lipid ligand itself, determine the fate of the ligand in the cell. Finally, there are an increasing number of reports that deficiencies or altered functioning of both membrane-associated and cytoplasmic lipid binding proteins are associated with disease states, such as obesity, diabetes and atherosclerosis. In conclusion, because of their central role in the regulation of lipid metabolism, cellular lipid binding proteins are promising targets for the treatment of diseases resulting from or characterised by disturbances in lipid metabolism, such as atherosclerosis, hyperlipidemia, and insulin resistance.  相似文献   

2.
Objective: Preclinical evaluation of DRF 2655, a peroxisome proliferator‐activated receptor alpha (PPARα) and PPARγ agonist, as a body‐weight lowering, hypolipidemic and euglycemic agent. Research Methods and Procedures: DRF 2655 was studied in different genetic, normal, and hyperlipidemic animal models. HEK 293 cells were used to conduct the reporter‐based transactivation of PPARα and PPARγ. To understand the biochemical mechanism of lipid‐, body‐weight‐, and glucose‐lowering effects, activities of key β‐oxidation and lipid catabolism enzymes and gluconeogenic enzymes were studied in db/db mice treated with DRF 2655. 3T3L1 cells were used for adipogenesis study, and HepG2 cells were used to study the effect of DRF 2655 on total cholesterol and triglyceride synthesis using [14C]acetate and [3H]glycerol. Results: DRF 2655 showed concentration‐dependent transactivation of PPARα and PPARγ. In the 3T3L1 cell‐differentiation study, DRF 2655 and rosiglitazone showed 369% and 471% increases, respectively, in triglyceride accumulation. DRF 2655 showed body‐weight lowering and euglycemic and hypolipidemic effects in various animal models. db/db mice treated with DRF 2655 showed 5‐ and 3.6‐fold inhibition in phosphoenolpyruvate carboxykinase and glucose 6‐phosphatase activity and 651% and 77% increases in the β‐oxidation enzymes carnitine palmitoyltransferase and carnitine acetyltransferase, respectively. HepG2 cells treated with DRF 2655 showed significant reduction in lipid synthesis. Discussion: DRF 2655 showed excellent euglycemic and hypolipidemic activities in different animal models. An exciting finding is its body‐weight lowering effect in these models, which might be mediated by the induction of target enzymes involved in hepatic lipid catabolism through PPARα activation.  相似文献   

3.
4.
Diabetes normally causes lipid accumulation and oxidative stress in the kidneys, which plays a critical role in the onset of diabetic nephropathy; however, the mechanism by which dysregulated fatty acid metabolism increases lipid and reactive oxygen species (ROS) formation in the diabetic kidney is not clear. As succinate is remarkably increased in the diabetic kidney, and accumulation of succinate suppresses mitochondrial fatty acid oxidation and increases ROS formation, we hypothesized that succinate might play a role in inducing lipid and ROS accumulation in the diabetic kidney. Here we demonstrate a novel mechanism by which diabetes induces lipid and ROS accumulation in the kidney of diabetic animals. We show that enhanced oxidation of dicarboxylic acids by peroxisomes leads to lipid and ROS accumulation in the kidney of diabetic mice via the metabolite succinate. Furthermore, specific suppression of peroxisomal β-oxidation improved diabetes-induced nephropathy by reducing succinate generation and attenuating lipid and ROS accumulation in the kidneys of the diabetic mice. We suggest that peroxisome-generated succinate acts as a pathological molecule inducing lipid and ROS accumulation in kidney, and that specifically targeting peroxisomal β-oxidation might be an effective strategy in treating diabetic nephropathy and related metabolic disorders.  相似文献   

5.
6.
Objective: Recently, an activation of the endocannabinoid system during obesity has been reported. More particularly, it has been demonstrated that hypothalamic levels of both endocannabinoids, 2‐arachidonoylglycerol and anandamide (N‐arachidonoylethanolamine), are up‐regulated in genetically obese rodents. Circulating levels of both endocannabinoids were also shown to be higher in obese compared with lean women. Yet, the direct production of endocannabinoids by human adipocytes has never been demonstrated. Our aim was to evaluate the ability of human adipocytes to produce endocannabinoids. Research Methods and Procedures: The production of endocannabinoids by human adipocytes was investigated in a model of human white subcutaneous adipocytes in primary culture. The effects of leptin, adiponectin, and peroxisome proliferator‐activated receptor (PPAR)‐γ activation on endocannabinoid production by adipocytes were explored. Endocannabinoid levels were determined by high‐performance liquid chromatography (HPLC)‐atmospheric pressure chemical ionization (APCI)‐mass spectrometry (MS) analysis, leptin and adiponectin secretion measured by enzyme‐linked immunosorbent assay (ELISA), and PPAR‐γ protein expression examined by Western blotting. Results: We show that 2‐arachidonoylglycerol, anandamide, and both anandamide analogs, N‐palmitoylethanolamine and N‐oleylethanolamine, are produced by human white subcutaneous adipocytes in concentrations ranging from 0.042 ± 0.004 to 0.531 ± 0.048 pM/mg lipid extract. N‐palmitoylethanolamine is the most abundant cannabimimetic compound produced by human adipocytes, and its levels are significantly down‐regulated by leptin but not affected by adiponectin and PPAR‐γ agonist ciglitazone. N‐palmitoylethanolamine itself does not affect either leptin or adiponectin secretion or PPAR‐γ protein expression in adipocytes. Discussion: This study has led to the identification of human adipocytes as a new source of endocannabinoids and related compounds. The biological significance of these adipocyte cannabimimetic compounds and their potential implication in obesity should deserve further investigations.  相似文献   

7.
Atherosclerosis is one of leading phenotypes of cardiovascular diseases, featured with increased vascular intima‐media thickness (IMT) and unstable plaques. The interaction between gastrointestinal system and cardiovascular homeostasis is emerging as a hot topic. Therefore, the present study aimed to explore the role of an intestinal protein, intestinal fatty acid‐binding protein (I‐FABP/FABP2) in the atherosclerotic progress. In western diet–fed ApoE?/? mice, FABP2 was highly expressed in intestine. Silence of intestinal Fabp2 attenuated western diet–induced atherosclerotic phenotypes, including decreasing toxic lipid accumulation, vascular fibrosis and inflammatory response. Mechanistically, intestinal Fabp2 knockdown improved intestinal permeability through increasing the expression of tight junction proteins. Meanwhile, intestinal Fabp2 knockdown mice exhibited down‐regulation of intestinal inflammation in western diet–fed ApoE?/? mice. In clinical patients, the circulating level of FABP2 was obviously increased in patients with cardiovascular disease and positively correlated with the value of carotid intima‐media thickness, total cholesterol and triglyceride. In conclusion, FABP2‐induced intestinal permeability could address a potential role of gastrointestinal system in the development of atherosclerosis, and targeting on intestinal FABP2 might provide a therapeutic approach to protect against atherosclerosis.  相似文献   

8.
High-density lipoprotein (HDL) is known as a protective factor against atherosclerosis. However, whether HDL-apolipoproteins (apo-HDL) contribute to the protection in arterial cells remains unclear. The localization patterns of human apolipoproteins in atherosclerotic arteries were determined using immunohistochemical examination. The results indicate that several apolipoproteins are retained in component cells of the coronary artery walls. To elucidate the possible roles of apo-HDL in the protection of atherosclerotic lesion formation, we investigated the effects of apo-HDL on the formation of conjugated diene (CD) in a cell-free system and thiobarbituric acid-reactive substances (TBARS) in the medium of a macrophage-mediated LDL oxidation system. The results showed that apo-HDL significantly exerted an inhibitory effect on LDL lipid oxidation in vitro. In addition, apo-HDL decreased cholesterol influx but enhanced cholesterol efflux from J774 macrophages in a dose-dependent manner. These results are consistent with the notion that there is reduced intracellular lipid accumulation in apo-HDL treated macrophages. These data provide a direct evidence for apo-HDL in protecting LDL from oxidative modification and in reducing the accumulation of cholesterol and lipid droplets by J774 macrophages.  相似文献   

9.
核受体是配体活化的转录因子,能调控大量的靶基因。近年来核受体调节脂质代谢的研究已成为国内外研究的热点。由于核受体在调节脂质代谢、糖代谢以及炎症反应方面发挥重要作用,它们是治疗心血管疾病理想的靶标。本文简要地介绍了核受体在调节脂质代谢方面的研究进展。  相似文献   

10.
Myeloperoxidase (MPO) is an oxidant-generating enzyme present in macrophages at atherosclerotic lesions and implicated in coronary artery disease (CAD). Although mouse models are important for investigating the role of MPO in atherosclerosis, neither mouse MPO nor its oxidation products are detected in lesions in murine models. To circumvent this problem, we generated transgenic mice expressing two functionally different human MPO alleles, with either G or A at position -463, and crossed these to the LDL receptor-deficient (LDLR(-/-)) mouse. The -463G allele is linked to higher MPO expression and increased CAD incidence in humans. Both MPO alleles were expressed in a subset of lesions in high-fat-fed LDLR(-/-) mice, notably at necrotic lesions with cholesterol clefts. MPOG-expressing LDLR(-/-) males (but not females) developed significantly higher serum cholesterol, triglycerides, and glucose, all correlating with increased weight gain/obesity, implicating MPO in lipid homeostasis. The MPOG- and MPOA-expressing LDLR(-/-) males also exhibited significantly larger aortic lesions than control LDLR(-/-) males. The human MPO transgenic model will facilitate studies of MPO involvement in atherosclerosis and lipid homeostasis.  相似文献   

11.
Although diabetes normally causes an elevation of cholesterol biosynthesis and induces hypercholesterolemia in animals and human, the mechanism linking diabetes to the dysregulation of cholesterol biosynthesis in the liver is not fully understood. As liver peroxisomal β-oxidation is induced in the diabetic state and peroxisomal oxidation of fatty acids generates free acetate, we hypothesized that peroxisomal β-oxidation might play a role in liver cholesterol biosynthesis in diabetes. Here, we used erucic acid, a specific substrate for peroxisomal β-oxidation, and 10,12-tricosadiynoic acid, a specific inhibitor for peroxisomal β-oxidation, to specifically induce and suppress peroxisomal β-oxidation. Our results suggested that induction of peroxisomal β-oxidation increased liver cholesterol biosynthesis in streptozotocin-induced diabetic mice. We found that excessive oxidation of fatty acids by peroxisomes generated considerable free acetate in the liver, which was used as a precursor for cholesterol biosynthesis. In addition, we show that specific inhibition of peroxisomal β-oxidation decreased cholesterol biosynthesis by reducing acetate formation in the liver in diabetic mice, demonstrating a crosstalk between peroxisomal β-oxidation and cholesterol biosynthesis. Based on these results, we propose that induction of peroxisomal β-oxidation serves as a mechanism for a fatty acid-induced upregulation in cholesterol biosynthesis and also plays a role in diabetes-induced hypercholesterolemia.  相似文献   

12.
Intracellular lipid binding proteins of the small intestine   总被引:1,自引:0,他引:1  
The small intestine contains three distinct proteins belonging to the intracellular lipid binding protein family: the liver-type fatty acid binding protein (L-FABP), the intestinal fatty acid binding protein (I-FABP) and the ileal lipid binding protein (ilbp). The function of these proteins in the small intestine has remained enigmatic. Targeted gene disruption studies may shed insights into the physiological importance of these proteins. In the case of I-FABP, this approach has demonstrated that the complete elimination of this protein in murine intestine does not compromise dietary fat absorption in vivo but is associated with the development of insulin resistance.  相似文献   

13.
14.
A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (149%), phospholipids (15%), and sphingomyelin (54%) than Apoe KO controls. In contrast to chow-fed animals, COD-fed Pltp KO/Apoe KO mice had the same atherosclerotic lesion size as that of Apoe KO mice. Similar to Pltp KO mice, plasma from COD-fed Pltp KO/Apoe KO mice contained VLDL/LDL-sized lamellar particles. Bile measurement indicated that COD-fed Pltp KO mice have 33% less hepatic cholesterol output than controls. In conclusion, COD-fed, Pltp-deficient mice are no longer protected from atherosclerosis and have impaired biliary lipid secretion, which is associated with free cholesterol and phospholipid accumulation.  相似文献   

15.
本研究通过观察丁酸对动脉粥样硬化斑块形成以及肠道组织结构和功能的影响,探讨丁酸防治动脉粥样硬化的效应及可能机制.选取8周龄雄性载脂蛋白E基因敲除(apolipoprotein E-knockout,ApoE-/-)小鼠,随机分成对照组(高脂高胆固醇饲料+饮水中给予200 mmol/L氯化钠,n = 10)和丁酸组(高脂...  相似文献   

16.
Objective: The putative selective estrogen receptor modulator (+)‐Z‐bisdehydrodoisynolic acid (Z‐BDDA) has been found to improve cardiovascular risk in rodents. The objective of this study was to investigate the effectiveness of (+)‐Z‐BDDA compared with the antidiabetic drug, rosiglitazone, in treating obesity and risk factors associated with the metabolic syndrome. Research Methods and Procedures: Female Zucker Diabetic Fatty rats were randomly assigned to three treatment groups for 29 weeks: control (C), 1.8 mg (+)‐Z‐BDDA/kg diet [control diet + (+)‐Z‐BDDA (CB)], or 100 mg rosiglitazone/kg diet [control diet + rosiglitazone (CR)]. At sacrifice, physiological, biochemical, and molecular parameters were examined. Results: CB animals gained less weight and exhibited a decrease in total body lipids (p < 0.05) as compared with C or CR rats. Body weight and total body lipids were the highest in CR rats (p < 0.05). Liver weights in CB and CR rats were lower (p < 0.05) than in C rats, whereas kidney weights were lower in CB (p < 0.05) than in C and CR animals. Fasting plasma glucose was lower (p < 0.05) in the CB and CR animals when compared with C animals. C rats exhibited the highest concentration of total plasma cholesterol, and CR‐treated rats exhibited the lowest concentration. Plasma triglycerides followed the same pattern as plasma cholesterol. Histomorphometry of heart vasculature revealed that CB and CR treatments produced a significant shift from small to large venules and arterioles compared with C (p < 0.05). Liver expression profiles of peroxisome proliferator‐activated receptor (PPAR) α, PPARγ, and PPAR‐regulated genes revealed encouraging CB‐induced effects. Discussion: These results suggest that (+)‐Z‐BDDA may have applications in treating obesity and complications associated with the metabolic syndrome.  相似文献   

17.
Tumour necrosis factor (TNF)‐α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2S) contains anti‐inflammatory and biological effects in cardiomyocytes. This study investigated whether H2S modulates TNF‐α‐dysregulated mitochondrial function and metabolism in cardiomyocytes. HL‐1 cells were incubated with TNF‐α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator‐activated receptor (PPAR) isoforms, pro‐inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2′, 7′‐dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF‐α‐treated HL‐1 cells. TNF‐α‐treated HL‐1 cells exhibited lower expression of PPAR‐α, PPAR‐δ, phosphorylated 5′ adenosine monophosphate‐activated protein kinase‐α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase‐1, PPAR‐γ coactivator 1‐α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR‐γ, interleukin‐6 and RAGE protein than control or combined NaHS and TNF‐α‐treated HL‐1 cells. NaHS modulates the effects of TNF‐α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation‐induced cardiac dysfunction.  相似文献   

18.
Chronic griseofulvin (GF) feeding induces preneoplastic foci followed by hepatocellular carcinoma in the mouse liver. Our previous study suggested that GF-induced hepatocellular proliferation had a different mechanism from that of peroxisome proliferator (PP)–induced direct hyperplasia. The GF-induced hepatocellular proliferation was mediated through activation of immediate early genes such as Fos, Jun, Myc, and NFκB. In contrast, PP-induced direct hyperplasia does not involve activation of any of these immediate early genes. It has been shown that nuclear hormone receptors including peroxisome proliferator activated receptors (PPARs) and retinoid x receptors (RXRs) play important roles in mediating the pleiotropic effects of PPs. To examine the possible roles of PPARs and RXRs during non-PP-induced hepatocellular proliferation and the interaction between PP and non-PP-induced proliferation, we have studied the expression of the PPAR and RXR genes in the GF model using northern blot hybridizations and gel retardation assays. The data showed that the expression of PPARα and RXRα genes was down-regulated in the livers containing preneoplastic nodules and in the liver tumors induced by GF. The mRNA down-regulation was accompanied by a decrease in the amount of nuclear protein–bound to peroxisome proliferator and retinoic acid responsive elements. Down-regulation was also associated with the suppressed expression of the PPARα/RXRα target genes (i.e., acyl-Co oxidase and cytochrome P450 4A1) and the catalase gene. The RXRγ gene was also down-regulated, but the RARα, β, and γ and PPARβ and γ genes were up-regulated. These results indicated that the hepatocarcinogenesis induced by GF is accompanied by suppression of the PPARα/RXRα-mediated direct hyperplasia pathway. The differential expression of these nuclear hormone receptors reveals a new aspect for understanding the individual roles and intercommunication of PPAR, RXR, and RAR isoforms in the liver. J. Cell. Biochem. 69:189–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号