首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For grain crops such as rice (Oryza sativa), grain size substantially affects yield. The histone acetyltransferase GRAIN WEIGHT 6a (GW6a) determines grain size and yield in rice. However, the gene regulatory network underlying GW6a-mediated regulation of grain size has remained elusive. In this study, we show that GW6a interacts with HOMOLOG OF DA1 ON RICE CHROMOSOME 3 (HDR3), a ubiquitin-interacting motif-containing ubiquitin receptor. Transgenic rice plants overexpressing HDR3 produced larger grains, whereas HDR3 knockout lines produce smaller grains compared to the control. Cytological data suggest that HDR3 modulates grain size in a similar manner to GW6a, by altering cell proliferation in spikelet hulls. Mechanistically, HDR3 physically interacts with and stabilizes GW6a in an ubiquitin-dependent manner, delaying protein degradation by the 26S proteasome. The delay in GW6a degradation results in dramatic enhancement of the local acetylation of H3 and H4 histones. Furthermore, RNA sequencing analysis and chromatin immunoprecipitation assays reveal that HDR3 and GW6a bind to the promoters of and modulate a common set of downstream genes. In addition, genetic analysis demonstrates that HDR3 functions in the same genetic pathway as GW6a to regulate the grain size. Therefore, we identified the grain size regulatory module HDR3–GW6a as a potential target for crop yield improvement.

A ubiquitin receptor ubiquitylates and stabilizes a histone acetyltransferase; this module regulates downstream gene expression, altering rice grain size by modulating cell proliferation.  相似文献   

2.
Grain size is one of the essential components determining rice yield and is a target for both domestication and artificial breeding. Gibberellins (GAs) are diterpenoid phytohormones that influence diverse aspects of plant growth and development. Several quantitative trait loci (QTLs) have been identified that control grain size through phytohormone regulation. However, little is known about the role of GAs in the control of grain size. Here we report the cloning and characterization of a QTL, GW6 (GRAIN WIDTH 6), which encodes a GA‐regulated GAST family protein and positively regulates grain width and weight. GW6 is highly expressed in the young panicle and increases grain width by promoting cell expansion in the spikelet hull. Knockout of GW6 exhibits reduced grain size and weight, whereas overexpression of GW6 results in increased grain size and weight. GW6 is induced by GA and its knockout downregulates the expression of GA biosynthesis genes and decreases GA content in the young panicle. We found that a natural variation in the cis element CAAT‐box in the promoter of GW6 is associated with its expression level and grain width and weight. Furthermore, introduction of GW6 to Oryza indica variety HJX74 can lead to a 10.44% increase in rice grain yield, indicating that GW6 has great potential to improve grain yield in rice.  相似文献   

3.
Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.  相似文献   

4.
Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that O ryza s ativa CCCH‐t andem z inc f inger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5‐GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress‐responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non‐transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions.  相似文献   

5.
Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today’s cultivars compared with t...  相似文献   

6.
7.
Grain shape and size both determine grain weight and therefore crop yield. However, the molecular mechanisms controlling grain shape and size are still largely unknown. Here, we isolated a rice mutant, beak-shaped grain1 (bsg1), which produced beak-shaped grains of decreased width, thickness and weight with a loosely interlocked lemma and palea that were unable to close tightly. Starch granules were also irregularly packaged in the bsg1 grains. Consistent with the lemma and palea shapes, the outer parenchyma cell layers of these bsg1 tissues developed fewer cells with decreased size. Map-based cloning revealed that BSG1 encoded a DUF640 domain protein, TRIANGULAR HULL 1, of unknown function. Quantitative PCR and GUS fusion reporter assays showed that BSG1 was expressed mainly in the young panicle and elongating stem. The BSG1 mutation affected the expression of genes potentially involved in the cell cycle and GW2, an important regulator of grain size in rice. Our results suggest that BSG1 determines grain shape and size probably by modifying cell division and expansion in the grain hull.  相似文献   

8.
9.
10.
Grain/seed yield and plant stress tolerance are two major traits that determine the yield potential of many crops. In cereals, grain size is one of the key factors affecting grain yield. Here, we identify and characterize a newly discovered gene Rice Big Grain 1 (RBG1) that regulates grain and organ development, as well as abiotic stress tolerance. Ectopic expression of RBG1 leads to significant increases in the size of not only grains but also other major organs such as roots, shoots and panicles. Increased grain size is primarily due to elevated cell numbers rather than cell enlargement. RBG1 is preferentially expressed in meristematic and proliferating tissues. Ectopic expression of RBG1 promotes cell division, and RBG1 co‐localizes with microtubules known to be involved in cell division, which may account for the increase in organ size. Ectopic expression of RBG1 also increases auxin accumulation and sensitivity, which facilitates root development, particularly crown roots. Moreover, overexpression of RBG1 up‐regulated a large number of heat‐shock proteins, leading to enhanced tolerance to heat, osmotic and salt stresses, as well as rapid recovery from water‐deficit stress. Ectopic expression of RBG1 regulated by a specific constitutive promoter, GOS2, enhanced harvest index and grain yield in rice. Taken together, we have discovered that RBG1 regulates two distinct and important traits in rice, namely grain yield and stress tolerance, via its effects on cell division, auxin and stress protein induction.  相似文献   

11.
Phytohormones, such as auxin and cytokinin, are known to be involved in the regulation of plant responses to salinity stress and counteract the adverse effect of stress conditions. This work investigated the effects of the exogenous spraying of indole-3-acetic acid (IAA) and kinetin (KIN) during the reproductive phase on grain yield by examining the 1000-grain weight and filled-grain percentage as well as the changes in starch, total soluble sugars, sucrose, glucose and fructose concentrations in the grains of two rice cultivars under salt stress. The results indicated that the applied IAA and KIN led to an increased grain yield, 1000-grain weight and filled-grain percentage for both rice cultivars under salt stress. The storage starch content in the grain of the salt-sensitive cultivar was more than that in the salt-tolerant cultivar under IAA application compared with KIN, whereas a decrease in the total soluble sugar content was observed with both IAA and KIN treatments, in comparison to the non-hormone treatment. Interestingly, this study showed that IAA led to a much higher increase in the sucrose content in grain, as compared to the KIN. Furthermore, this experiment suggests that glucose and fructose may play important roles during salt stress because there were clearly higher concentrations of these sugars in the grain of the stressed cultivars under IAA and KIN application: it appears that their accumulation was the earliest response detected during the grain-filling period in rice. Finally, this work indicated that an increase in the rice grain yield, 1000-grain weight and filled-grain percentage are associated with an increase in the contents of starch, sucrose, glucose and fructose in grain caused by the application of IAA and KIN.  相似文献   

12.
Heat stress during the grain-filling period is the main abiotic stress factor limiting grain yield and quality in wheat (Triticum aestivum L.). In this study, 64 wheat genotypes were exposed to heat stress during reproduction caused by delayed sowing in two growing seasons. Grain yield, 1000 grain weight (GW), grain hardness (GH), and grain-quality related traits were investigated. Heat stress caused a significant decrease in GW through reducing starch content (SC) and a non-compensating rise in protein content (PC), and thereby resulted in lower yield. In addition, significant increases in flour water absorption (WA), Zeleny sedimentation volume (ZT), ash content (AC), lipid content (LC), loaf volume (LV), wet gluten content (WG), dry gluten content (DG), gluten index (GI), and amylopectin content (APC) were found following heat stress. In contrast, decreases in grain moisture content (MC) and amylose content (AMC) induced by heat stress were observed. The heat-tolerant genotypes were superior in grain yield, GW, SC, AMC, and MC. While the sensitive genotypes contained higher PC, LV, GI and AMP. A group of wheat genotypes characterized with a higher yield, AMC, GW, and SC as well as lower PC, WA, GH, ZT, and LV; and was found to be the most heat tolerant by principal component analysis. Lighter weight and smaller grains produce a smaller starchy endosperm with lower quality (less amylose) and higher grain protein content in heat stress compared to normal conditions. Heat stress caused by delayed sowing improves some of the baking-quality related traits.  相似文献   

13.
Fragrant rice is popular for the good grain quality and special aroma. The present study conducted a field experiment to investigate the effects of ultrasonic seed treatment on grain yield, quality characters, physiological properties and aroma biosynthesis of different fragrant rice genotypes. The seeds of three fragrant rice genotypes were exposed to 1 min of ultrasonic vibration and then cultivated in paddy field. The results of present study showed that ultrasonic seed treatment increased grain yield of all fragrant rice genotypes but the responses of yield formation to ultrasonic were varied with different genotypes. Compared with control, ultrasonic seed treatment increased grain 2-acetyl-1-pyrroline (2-AP, the key component of fragrant rice aroma) content by 13.40%–44.88%. Ultrasonic seed treatment also reduced the crude protein contents in grains. The head rice rate, rice length, chalky rice rate, and chalkiness degree were influenced by ultrasonic for one or two fragrant rice genotypes. The activities of peroxidase and superoxide dismutase were also enhanced due to ultrasonic seed treatment. In conclusion, ultrasonic seed treatment increased grain, regulated grain aroma and quality, and improved stress resistance of fragrant rice varieties.  相似文献   

14.
15.
When kinetin was applied to the source organ (flag leaf) of rice (Oryza sativa L. cv. Ratna), foliar senescence was delayed and grain yield per plant (as evidenced by grain weight, grain/straw weight ratio and 1,000 grain growth) was increased through the increase of sink activity (increase in dry weight of the grains/plant), duration of sink capacity as well as photosynthetic ability of the glumes (as determined by the chlorophyll content of the glumes of the developing grains). However, application of kinetin to the sink organs (fruits), promoted senescence of the source but increased the yield by increasing the sink capacity and 1,000 grain growth mostly at the earlier stage of reproductive development. Lower sterility percentage was associated with higher grain yield of the plant by kinetin treatments. ABA applied either to the source or the sink promoted leaf senescence and reduced the grain yield by reducing the sink activity, harvest index, sink capacity duration and increasing the sterility percentage. Thousand grain dry weight at harvest did not vary significantly amongst the treatments. It was concluded that nutrient drainage was associated with the correlative influence of fruit on the monocarpic senescence of rice plant and that a competetion for differential allocation of cytokinin and ABA in the source and sink organs initiates this senescence syndrome.  相似文献   

16.
为探究核黄素在水稻非生物胁迫响应中的作用,以粳稻Kitaake和籼稻T98B为试验材料,考察了核黄素对2种材料的盐、高温、渗透、碱和氧化胁迫响应的影响,重点测定了盐和高温胁迫下水稻体内核黄素合成基因的表达和相关生理指标。结果表明,(1)施加外源核黄素有效提高了2种水稻材料的盐和高温胁迫耐受性,降低了渗透胁迫耐受性,而其氧化和碱胁迫耐受性不受影响。(2)逆境胁迫均不同程度地促进了核黄素在2种水稻材料中的积累,尤其在盐和高温胁迫下促进效果最明显。(3)盐和高温胁迫均诱导了核黄素合成酶基因的表达,促进了核黄素的生物合成,改善了水稻的胁迫耐受性。研究表明,非生物逆境胁迫能促进核黄素在水稻体内的合成和积累,外源核黄素也能明显提高水稻对盐和高温胁迫的耐受性,但却降低了其对渗透胁迫的耐受性。  相似文献   

17.
The effect of Leptocorisa oratorius (F.) on the yield, grain quality, and seed viability of four rice, Oryza sativa L., lines was studied. Three of the lines, C2, IR64, and PSBRc20, are grown in the Philippines. The fourth, IR72164-201-1 is an unreleased experimental line of an O. sativa japonica x O. sativa indica cross. Each line was exposed to four infestation densities for 21 d. L. oratorius feeding produced unfilled and partially filled grains, resulting in a negative correlation of yield to rice bug density. When filled grains were sown, germination rates were negatively correlated with rice bug densities. The percentage of discolored grains was positively correlated with L. oratorius density on all rice lines. At the same infestation rates, PSBRc20 and IR64 had higher yields, less damaged grain, and higher germination rates than IR72164-201-1 and C2, suggesting host plant tolerance to rice bug feeding. The economic injury levels (EILs) currently used for rice bug management are based solely on yield loss estimates. The results of this study suggest that EIL for rice bugs should be revised to take into account reductions in grain quality and seed germination rates in addition to yield loss.  相似文献   

18.
水稻是最重要的粮食作物之一,提高水稻产量一直是育种的主要目标。水稻四倍体相对于二倍体具有籽粒变大、粒重增加的特点,研究基因组加倍后籽粒大小基因的调控模式,在育种应用方面具有十分重要的意义。本文以二倍体 -四倍体水稻为材料,分析6个控制籽粒大小基因在幼穗发育中的表达差异,同时结合转基因实验,探讨基因剂量增加对基因表达水平和籽粒大小的影响。结果发现:基因组加倍后,水稻的发育进程不变,但株高增加,叶片变宽,籽粒变大,增大后的籽粒在籼稻表现为长、宽均增加显著,而在粳稻中长度比宽度增加更为明显。进一步分析控制籽粒大小基因的表达差异情况,发现这些基因的表达不仅受发育时期的影响,在籼粳亚种间也明显不同,即受遗传背景的影响。在基因组加倍的情况下,正调控基因GS5、HGW的表达普遍高于对应的二倍体;负调控基因GS3在籼稻D9311中趋于下调或沉默,而在粳稻DBl中趋于上调,GW2在D9311中上调,而在DBl中趋于沉默。通过转基因实验分析负调控基因GW2在二倍体Bl中的表达趋势,发现其在基因剂量线性增加的情况下,表达水平高于二倍体和四倍体,导致其籽粒变小。本研究结果有助于了解水稻中控制籽粒大小的基因在二倍体和四倍体中的表达模式,为高产育种提供理论依据。  相似文献   

19.
20.
Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1‐1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain‐like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1‐1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP–WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain‐like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号