首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Tumour protein p53‐inducible nuclear protein 1 (TP53INP1) is a tumour suppressor associated with malignant tumour metastasis. Vasculogenic mimicry (VM) is a new tumour vascular supply pattern that significantly influences tumour metastasis and contributes to a poor prognosis. However, the molecular mechanism of the relationship between TP53INP1 and breast cancer VM formation is unknown. Here, we explored the underlying mechanism by which TP53INP1 regulates VM formation in vitro and in vivo. High TP53INP1 expression was not only negatively correlated with a poor prognosis but also had a negative relationship with VE‐cadherin, HIF‐1α and Snail expression. TP53INP1 overexpression inhibited breast cancer invasion, migration, epithelial‐mesenchymal transition (EMT) and VM formation; conversely, TP53INP1 down‐regulation promoted these processes in vitro by functional experiments and Western blot analysis. We established a hypoxia model induced by CoCl2 and assessed the effects of TP53INP1 on hypoxia‐induced EMT and VM formation. In addition, we confirmed that a reactive oxygen species (ROS)‐mediated signalling pathway participated in TP53INP1‐mediated VM formation. Together, our results show that TP53INP1 inhibits hypoxia‐induced EMT and VM formation via the ROS/GSK‐3β/Snail pathway in breast cancer, which offers new insights into breast cancer clinical therapy.  相似文献   

4.
Hypoxia‐inducible factor‐2α (HIF‐2α) plays an important role in increasing cancer progression and distant metastasis in a variety of tumour types. We aimed to investigate its biological function and clinical significance in human pancreatic ductal adenocarcinoma (PDAC). A total of 283 paired PDAC tissues and adjacent normal tissues were collected from patients who underwent surgery or biopsy at Sun Yat‐sen Memorial Hospital between February 2004 and October 2016. In this study, we noted that HIF‐2α expression was significantly up‐regulated in PDAC, positively associated with disease stage, lymph‐node metastasis and patient survival, and identified as an independent prognostic factor of PDAC patients. We demonstrated that HIF‐2α silencing could reduce proliferation, migration and invasion of PDAC cells in vitro. The similar effect on growth was demonstrated in vivo. Furthermore, we noted that knock‐down of HIF‐2α significantly decreased the expression of glutamate oxaloacetate transaminase 1 (GOT1). Importantly, we confirmed that the PI3K/mTORC2 pathway promoted GOT1 expression by targeting HIF‐2α. Our study validated HIF‐2α was an important factor in PDAC progression and poor prognosis and may promote non‐canonical glutamine metabolism via activation of PI3K/mTORC2 pathway. Targeting HIF‐2α represents a novel prognostic biomarker and therapeutic target for patients with PDAC.  相似文献   

5.
piRNA‐823 as a member of the piRNA family is reported to promote tumour cell proliferation in multiple myeloma and hepatocellular cancer. However, few studies on the function of piRNA‐823 in colorectal cancer (CRC). Our present study data showed that piRNA‐823 plays an oncogene role in CRC cells. Inhibition of piRNA‐823 can significantly inhibit the proliferation, invasion and apoptosis resistance of CRC cells. Mechanism studies have shown that piRNA‐823 inhibits the ubiquitination of hypoxia‐inducible factor‐1 alpha (HIF‐1α) by up‐regulating the expression of Glucose‐6‐phosphate dehydrogenase (G6PD) and ultimately up‐regulates the glucose consumption of carcinoma cells and inhibits the content of intracellular reactive oxygen species (ROS). Therefore, we speculate piRNA‐823 promotes the proliferation, invasion and apoptosis resistance of CRC cells by regulating G6PD/HIF‐1α pathway. In this study, we set up the cancer‐promoting function recovery experiment of piRNA‐823 by silencing G6PD gene to confirm the dominance of the above‐mentioned pathways. Using clinical samples, we found that overexpression of piRNA‐823 correlated with poor overall survival and predicted a poor response to adjuvant chemotherapy of patients with CRC. In a word, our research has further enriched the theory of piRNA‐823 promoting the progression of CRC, and laid a solid foundation for the development of piRNA‐823‐based gene therapy for CRC and its use as a promising prognostic biomarker in CRC patients.  相似文献   

6.
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre‐treated with QL (0.5 mg/mL) and/or HIF‐1α siRNA were cultured in a three‐gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF‐1α‐dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF‐1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up‐regulating HIF‐1α and a series of glycolysis‐relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6‐phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF‐1α‐dependent manner. Lastly, the results suggested that QL‐dependent enhancement of HIF‐1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF‐1α pathway, and we speculated that QL also improved HIF‐1α stabilization through down‐regulating prolyl hydroxylases 3 (PHD3) expression.  相似文献   

7.
Aberrant Notch signalling plays an important role in cancer progression. However, little is known about the interaction between miRNA and the Notch signalling pathway and its role in gastric cancer (GC). In this study, we found that miR‐124 was down‐regulated in GC compared with adjacent normal tissue. Forced expression of miR‐124 inhibited GC cell growth, migration and invasion, and induced cell cycle arrest. miR‐124 negatively regulated Notch1 signalling by targeting JAG1. miR‐124 levels were also shown to be inversely correlated with JAG1 expression in GC. Furthermore, we found that the overexpression of the intracellular domain of Notch1 repressed miR‐124 expression, promoted GC cell growth, migration and invasion. Conversely, blocking Notch1 using a γ‐secretase inhibitor up‐regulated miR‐124 expression, inhibited GC cell growth, migration and invasion. In conclusion, our data demonstrates a regulatory feedback loop between miR‐124 and Notch1 signalling in GC cells, suggesting that the miR‐124/Notch axis may be a potential therapeutic target against GC.  相似文献   

8.
Chemoresistance is a critical challenge in the clinical treatment of triple‐negative breast cancer (TNBC). It has been well documented that inflammatory mediators from tumor microenvironment are involved in the pathogenesis of TNBC and might be related to chemoresistance of cancer cells. In this study, the contribution of interleukin‐6 (IL‐6), one of the principal oncogenic molecules, in chemoresistance of a TNBC cell line MDA‐MB‐231 was first investigated. The results showed that IL‐6 treatment could induce upregulation of HIF‐1α via the activation of STAT3 in MDA‐MB‐231 cells, which consequently contributed to its effect against chemotherapeutic drug‐induced cytotoxicity and cell apoptosis. However, knockdown of HIF‐1α attenuated such effect via affecting the expressions of apoptosis‐related molecules as Bax and Bcl‐2 and drug transporters as P‐gp and MRP1. This study indicated that targeting at IL‐6/HIF‐1α signaling pathway might be an effective strategy to overcome chemoresistance in TNBC therapy.  相似文献   

9.
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney.  相似文献   

10.
11.
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.  相似文献   

12.
Metastasis is a major cause of death from malignant diseases, and the underlying mechanisms are still largely not known. A detailed probe into the factors which may regulate tumour invasion and metastasis contributes to novel anti‐metastatic therapies. We previously identified a novel metastasis‐associated gene 1 (mag‐1) by means of metastatic phenotype cloning. Then we characterized the gene expression profile of mag‐1 and showed that it promoted cell migration, adhesion and invasion in vitro. Importantly, the disruption of mag‐1 via RNA interference not only inhibited cellular metastatic behaviours but also significantly reduced tumour weight and restrained mouse breast cancer cells to metastasize to lungs in spontaneous metastatic assay in vivo. Furthermore, we proved that mag‐1 integrates dual regulating mechanisms through the stabilization of HIF‐1α and the activation of mTOR signalling pathway. We also found that mag‐1‐induced metastatic promotion could be abrogated by mTOR specific inhibitor, rapamycin. Taken together, the findings identified a direct role that mag‐1 played in metastasis and implicated its function in cellular adaptation to tumour microenvironment.  相似文献   

13.
14.
15.
16.
It is well established that cancer cells depend upon aerobic glycolysis to provide the energy they need to survive and proliferate. However, anti‐glycolytic agents have yielded few positive results in human patients, in part due to dose‐limiting side effects. Here, we discovered the unexpected anti‐cancer efficacy of Polydatin (PD) combined with 2‐deoxy‐D‐glucose (2‐DG), which is a compound that inhibits glycolysis. We demonstrated in two breast cell lines (MCF‐7 and 4T1) that combination treatment with PD and 2‐DG induced cell apoptosis and inhibited cell proliferation, migration and invasion. Furthermore, we determined the mechanism of PD in synergy with 2‐DG, which decreased the intracellular reactive oxygen (ROS) levels and suppressed the PI3K/AKT pathway. In addition, the combined treatment inhibited the glycolytic phenotype through reducing the expression of HK2. HK2 deletion in breast cancer cells thus improved the anti‐cancer activity of 2‐DG. The combination treatment also resulted in significant tumour regression in the absence of significant morphologic changes in the heart, liver or kidney in vivo. In summary, our study demonstrates that PD synergised with 2‐DG to enhance its anti‐cancer efficacy by inhibiting the ROS/PI3K/AKT/HIF‐1α/HK2 signalling axis, providing a potential anti‐cancer strategy.  相似文献   

17.
18.
The Keap1‐Nrf2/ARE signaling pathway is an important defense system against exogenous and endogenous oxidative stress injury. The dysregulation of the signaling pathway is associated with many diseases, such as cancer, diabetes, and respiratory diseases. Over the years, a wide range of natural products has provided sufficient resources for the discovery of potential therapeutic drugs. Among them, polyphenols possess Nrf2 activation, not only inhibit the production of ROS, inhibit Keap1‐Nrf2 protein–protein interaction, but also degrade Keap1 and regulate the Nrf2 related pathway. In fact, with the continuous improvement of natural polyphenols separation and purification technology and further studies on the Keap1‐Nrf2 molecular mechanism, more and more natural polyphenols monomer components of Nrf2 activators have been gradually discovered. In this view, we summarize the research status of natural polyphenols that have been found with apparent Nrf2 activation and their action modes. On the whole, this review may guide the design of novel Keap1‐Nrf2 activator.  相似文献   

19.
miR‐516a‐3p has been reported to play a suppressive role in several types of human tumours. However, the expression level, biological function and fundamental mechanisms of miR‐516a‐3p in breast cancer remain unclear. In the present study, we found that miR‐516a‐3p expression was down‐regulated and Pygopus2 (Pygo2) expression was up‐regulated in human breast cancer tissues and cells. Through analysing the clinicopathological characteristics, we demonstrated that low miR‐516a‐3p expression or positive Pygo2 expression was a predictor of poor prognosis for patients with breast cancer. The results of a dual luciferase reporter assay and Western blot analysis indicated that Pygo2 was a target gene of miR‐516a‐3p. Moreover, overexpression of miR‐516a‐3p inhibited cell growth, migration and invasion as well as epithelial‐mesenchymal transition (EMT) of breast cancer cells, whereas reduced miR‐516a‐3p expression promoted breast cancer cell growth, migration, invasion and EMT. Furthermore, we showed that miR‐516a‐3p suppressed cell proliferation, metastasis and EMT of breast cancer cells by inhibiting Pygo2 expression. We confirmed that miR‐516a‐3p exerted an anti‐tumour effect by inhibiting the activation of the Wnt/β‐catenin pathway. Finally, xenograft tumour models were used to show that miR‐516a‐3p inhibited breast cancer cell growth and EMT via suppressing the Pygo2/Wnt signalling pathway. Taken together, these results show that miR‐516a‐3p inhibits breast cancer cell growth, metastasis and EMT by blocking the Pygo2/ Wnt/β‐catenin pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号