首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During reproduction, seabirds need to balance the demands of self- and offspring-provisioning within the constraints imposed by central place foraging. To assess behavioral adjustments and tolerances to these constraints, we studied the feeding tactics and reproductive success of common murres (also known as common guillemots) Uria aalge , at their largest and most offshore colony (Funk Island) where parents travel long distances to deliver a single capelin Mallotus villosus to their chicks. We assessed changes in the distance murres traveled from the colony, their proximate foraging locations and prey size choice during two successive years in which capelin exhibited an order of magnitude decrease in density and a shift from aggregated (2004) to dispersed (2005) distributions. When capelin availability was low (2005), parental murres increased their maximum foraging distances by 35% (60 to 81 km) and delivered significantly larger capelin to chicks, as predicted by central place foraging theory. Murres preferred large (>140 mm) relative to small capelin (100–140 mm) in both years, but unexpectedly this preference increased as the relative density of large capelin decreased. We conclude that single prey-loading murres target larger capelin during long foraging trips as parents are 'forced' to select the best prey for their offspring. Low fledgling masses suggest also that increased foraging time when capelin is scarce may come at a cost to the chicks (i.e. fewer meals per day). Murres at this colony may be functioning near physiological limits above which further or sustained adjustments in foraging effort could compromise the life-time reproductive success of this long-lived seabird.  相似文献   

2.
Biologging devices are providing detailed insights into the behaviour and movement of animals in their natural environments. It is usually assumed that this method of gathering data does not impact on the behaviour observed. However, potential negative effects on birds have rarely been investigated before field-based studies are initiated. Seabirds which both fly and use pursuit diving may be particularly sensitive to increases in drag and load resulting from carrying biologging devices. We studied chick-rearing adult common guillemots Uria aalge equipped with and without back-mounted GPS tags over short deployments of a few days. Concurrently guillemots carried small leg-mounted TDR devices (time-depth recorders) providing activity data throughout. Changes in body mass and breeding success were followed for device equipped and control guillemots. At the colony level guillemots lost body mass throughout the chick-rearing period. When-equipped with the additional GPS tag, the guillemots lost mass at close to twice the rate they did when equipped with only the smaller leg-mounted TDR device. The elevated mass loss suggests an impact on energy expenditure or foraging performance. When equipped with GPS tags diving performance, time-activity budgets and daily patterns of activity were unchanged, yet dive depth distributions differed. We review studies of tag-effects in guillemots Uria sp. finding elevated mass loss and reduced chick-provisioning to be the most commonly observed effects. Less information is available for behavioural measures, and results vary between studies. In general, small tags deployed over several days appear to have small or no measurable effect on the behavioural variables commonly observed in most guillemot tagging studies. However, there may still be impacts on fitness via physiological effects and/or reduced chick-provisioning, while more detailed measures of behaviour (e.g. using accelerometery) may reveal effects on diving and flight performance.  相似文献   

3.
Studies are increasingly demonstrating that individuals differ in their rate of ageing, and this is postulated to emerge from a trade-off between current and future reproduction. Recent theory predicts a correlation between individual personality and life-history strategy, and from this comes the prediction that personality may predict the intensity of senescence. Here we show that boldness correlates with reproductive success and foraging behaviour in wandering albatrosses, with strong sex-specific differences. Shy males show a strong decline in reproductive performance with age, and bold females have lower reproductive success in later adulthood. In both sexes, bolder birds have longer foraging trips and gain more mass per trip as they get older. However, the benefit of this behaviour appears to differ between the sexes, such that it is only matched by high reproductive success in males. Together our results suggest that personality linked foraging adaptations with age are strongly sex-specific in their fitness benefits and that the impact of boldness on senescence is linked to ecological parameters.  相似文献   

4.
Many studies of social species have reported variation in the anti-predator vigilance behaviour of foraging individuals depending on the presence and relative position of other group members. However, little attention has focused on how foragers assess these variables. It is commonly assumed that they do so visually, but many social species produce frequent calls while foraging, and these 'close' calls might provide valuable spatial information. Here, we show that foraging pied babblers (Turdoides bicolor) are less vigilant when in larger groups, in the centre of a group and in closer proximity to another group member. We then show that foragers are less vigilant during playbacks of close calling by more individuals and individuals on either side of them when compared with calls of fewer individuals and calls on one side of them. These results suggest that foragers can use vocal cues to gain information on group size and their spatial position within a group. Future studies of anti-predator vigilance should consider the relative importance of both visual and vocal monitoring of group members.  相似文献   

5.
  1. Changes in marine ecosystems are easier to detect in upper‐level predators, like seabirds, which integrate trophic interactions throughout the food web.
  2. Here, we examined whether diving parameters and complexity in the temporal organization of diving behavior of little penguins (Eudyptula minor) are influenced by sea surface temperature (SST), water stratification, and wind speed—three oceanographic features influencing prey abundance and distribution in the water column.
  3. Using fractal time series analysis, we found that foraging complexity, expressed as the degree of long‐range correlations or memory in the dive series, was associated with SST and water stratification throughout the breeding season, but not with wind speed. Little penguins foraging in warmer/more‐stratified waters exhibited greater determinism (memory) in foraging sequences, likely as a response to prey aggregations near the thermocline. They also showed higher foraging efficiency, performed more dives and dove to shallower depths than those foraging in colder/less‐stratified waters.
  4. Reductions in the long‐term memory of dive sequences, or in other words increases in behavioral stochasticity, may suggest different strategies concerning the exploration–exploitation trade‐off under contrasting environmental conditions.
  相似文献   

6.
Exploitation of food resources that are dispersed in time and space has been crucial to the evolutionary success of humans. Recent experimental work has shown that an absence of communication impairs decision‐making in a foraging task. Here, we found that individuals in larger teams were more likely to reach group consensus and were more accurate and efficient foragers. Individuals in larger teams were also more likely to gesture to one another, while levels of verbal exchange were not significantly different in small and large groups. At last, teams in which individuals reported that they knew one another and rated team members as helpful and information‐seeking were more accurate in their foraging. Overall, our findings offer experimental evidence that larger, communicating, familiar teams are quicker and more accurate foragers. We therefore suggest that complex communication within socially bonded relationships may have been important to the ecological success of the human lineage.  相似文献   

7.
Mixed-species flocks of birds form during winter in the easterndeciduous forests of North America. These flocks consist oftwo flock-leading nuclear species, tufted titmouse (Baeolophusbicolor) and Carolina chickadee (Poecile carolinensis), andseveral follower, or satellite, species, including downy woodpecker(Picoides pubescens) and white-breasted nuthatch (Sitta carolinensis).Hypotheses explaining the adaptiveness of participation in suchmixed-species foraging groups have focused on increased foragingsuccess and/or decreased predation risk. We tested the predictionthat if nuthatches join nuclear species to reduce predationrisk, they should be more reluctant to visit an exposed feederin the absence of titmice than in their presence. When the feederwas positioned 16 m from forest cover, latency to visit thefeeder was greater for both male and female nuthatches whentitmice were absent. Removal of titmice had no effect on latencyat 8 m. In the absence of titmice, nuthatches visited the feederless frequently at both distances. These results indicate thatreduced predation risk is a benefit that satellite species gainby flocking with nuclear species.  相似文献   

8.
Individual foraging specialisation has important ecological implications, but its causes in group‐living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group‐living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.  相似文献   

9.
10.
Group foraging allows for individuals to exploit the food discoveriesof other group members. If searching for food and searchingfor exploitation opportunities within a group are mutually exclusivealternatives, the decision to use one or the other is modeledas a producer-scrounger game because the value of each alternativeis frequency dependent. Stochastic producer-scrounger modelsgenerally assume that producer provides a more variable anduncertain reward than does the scrounger and hence is a riskierforaging alternative. Socially foraging animals that are attemptingto reduce their risk of starvation should therefore alter theiruse of producer and scrounger alternatives in response to changesin energy budget. We observed flocks of nutmeg mannikins (L.punctulata) foraging in an indoor aviary to determine whethertheir use of producer and scrounger alternatives were risk sensitive.Analyses of the foraging rewards of three flocks of seven birdsconfirm that producer is a riskier foraging strategy than isscrounger, although the difference in risk is rather small.We then submitted two other flocks to two different energy budgetsand observed the foraging decision of four focal birds in eachflock. All but one bird increased their relative use of theriskier producer strategy in the low food reserve treatment,but the overall use of producer did not differ significantlybetween treatments, providing evidence for a small but consistenteffect.  相似文献   

11.
Social vertebrates commonly form foraging groups whose members repeatedly interact with one another and are often genetically related. Many species also exhibit within‐population specializations, which can range from preferences to forage in particular areas through to specializing on the type of prey they catch. However, within‐population structure in foraging groups, behavioral homogeneity in foraging behavior, and relatedness could be outcomes of behavioral interactions rather than underlying drivers. We present a simple process by which grouping among foragers emerges and is maintained across generations. We introduce agent‐based models to investigate (1) whether a simple rule (keep foraging with the same individuals when you were successful) leads to stable social community structure, and (2) whether this structure is robust to demographic changes and becomes kin‐structured over time. We find the rapid emergence of kin‐structured populations and the presence of foraging groups that control, or specialize on, a particular food resource. This pattern is strongest in small populations, mirroring empirical observations. Our results suggest that group stability can emerge as a product of network self‐organization and, in doing so, may provide the necessary conditions for the evolution of more sophisticated processes, such as social learning. This taxonomically general social process has implications for our understanding of the links between population, genetic, and social structures.  相似文献   

12.
13.
Some predatory animals, represented by large carnivores, forage in groups and benefit from this behavior. We tested the hypothesis that carnivorous plants also benefit from group foraging to improve the efficiency of trapping large prey using Drosera makinoi (Droseraceae). As a result of our field observations, it was found that larger neighboring D. makinoi density yields a greater number of large preys (≥3 mm) and total prey biomass per plant. Results showed that a total of 43.4% of the events to trap large prey was achieved by two trap leaves belonging to two neighboring D. makinoi plants. Our results proved that group foraging in D. makinoi enables them to trap large prey.  相似文献   

14.
15.
We present two stochastic models of individual and social learningthat count the number of individuals exhibiting a learned, resource-producingtrait in a group of social foragers. The novelty of our modelingresults from incorporating the empirically based assumptionthat rates of both individual and social learning should dependon the frequency of the learned trait within the group. Whenresources occur as clumps shared by group members, a naive individual'sacquisition of the skill required for clump discovery/productionshould involve opposing processes of frequency dependence. Theopportunity to learn via cultural transmission should increasewith the trait's frequency, but the opportunity for learningindividually should decrease as the trait's frequency increases.The results of the model suggest that the evolution of the capacityfor cultural transmission may be promoted in environments wherescrounging at resource clumps inhibits rates of individual learning.  相似文献   

16.
When the consequences of sociality differ depending on the state of individual animals and the experienced environment, individuals may benefit from altering their social behaviours in a context‐dependent manner. Thus, to fully address the hypotheses about the role of social associations it is imperative to consider the multidimensional nature of sociality by explicitly examining social associations across multiple scales and contexts. We simultaneously recorded > 8000 associations from 85% of breeding individuals from a colony of Australasian gannets (Morus serrator) over a 2‐week period, and examined gregariousness across four foraging states using multilayer social network analysis. We found that social associations varied in a context‐dependent manner, highlighting that social associations are most prevalent during foraging (local enhancement) and in regions expected to provide clustered resources. We also provide evidence of individual consistency in gregariousness, but flexibility in social associates, demonstrating that individuals can adjust their social behaviours to match experienced conditions.  相似文献   

17.
The relationship between foraging demand and social behavior was experimentally studied in a laboratory group of bonnet macaques. Fourteen adult animals were housed in a large outdoor enclosure containing three shallow gravelfilled circular containers that served as the foraging sites. During the experimental foraging sessions raisins were placed in the containers and the social and foraging behaviors of the group were observed for 50 min following the distribution of raisins. Three types of foraging conditions were inter-spersed with one another on different test days: (1) surface load— raisins placed on top of the gravel; (2) buried load— raisins hidden underneath the gravel; and (3) sham load— no raisins placed at the foraging sites. Three basic foraging patterns, defined along a temporal dimension, were seen. One group of animals completed 50% of their total foraging by the end of the first 15 min. A second group foraged more steadily through the session. A third group foraged late, completing 50% of their foraging during the last half of the session. The foraging patterns were similar in the buried and surface condition, although the patterns were more compressed during the surface condition. More aggression and more avoidance of other animals occurred in the buried condition than in the surface condition. Very little foraging occurred during the sham condition. There was no clear relationship between the patterns of interaction during foraging and nonforaging observation sessions. The results suggest the value of manipulative laboratory studies in examining the relationship between ecological variables and social behavior in nonhuman primates.  相似文献   

18.
Leaf cutting ants are dominant herbivores and influential ecosystem engineers in the Neotropics. It has been suggested that habitat disturbances alter the architecture of foraging trail systems for colonies in their vicinity; however, the evidence remains scarce. In this study we investigated the effect of unpaved roads dissecting tropical lowland forest habitat on the structure of leafcutter foraging trail systems and foraging effort. We mapped trail systems for 16 mature Atta colombica colonies located at different distances from unpaved roads. Our results suggest exploitation of unpaved roads by leafcutters provides favorable foraging conditions, causing significant differences in foraging trail structure.  相似文献   

19.
Some seabird species have learnt to efficiently exploit fishing discards from trawling activities. However, a discard ban has been proposed as necessary in Europe to ensure the sustainability of the seas. It is of crucial importance for the management and conservation purposes to study the potential consequences of a discard ban on the foraging ecology of threatened seabirds. We assessed the influence of fishing activities on the feeding habits of 22 male and 15 female Audouin's gulls (Larus audouinii) from the Ebro Delta (Mediterranean Sea) during the breeding period using GPS loggers together with Stable Isotope Analysis (SIA), which provided new insights into their foraging behavior and trophic ecology, respectively. GPS data revealed different sex‐specific foraging patterns between workdays and weekends. Females were highly consistent in that they foraged at sea throughout the week even though discarding stops at weekends. In contrast, males switched from foraging at sea during the week (when discards are produced) to an increased use of rice field habitats at weekends (when fishermen do not work). This sex‐specific foraging behavior could be related to specific nutritional requirements associated with previous egg production, an energetically demanding period for females. However, on a broader time scale integrated by the SIA, both sexes showed a high degree of individual specialization in their trophic ecology. The need to obtain detailed information on the dependence and response of seabirds to fishing activities is crucial in conservation sciences. In this regard, sex‐specific foraging behavior in relation to fisheries has been overlooked, despite the ecological and conservation implications. For instance, this situation may lead to sex differentiation in bycatch mortality in longlines when trawlers do not operate. Moreover, any new fisheries policy will need to be implemented gradually to facilitate the adaptation of a specialized species to a discard ban scenario.  相似文献   

20.
Foraging in groups provides many benefits that are not necessarily experienced the same way by all individuals. I explore the possibility that foraging mode, the way individuals exploit resources, varies as a function of spatial position in the group, reflecting commonly occurring spatial differences in predation risk. I show that semipalmated sandpipers (Calidris pusilla), a social foraging avian species, tended to adopt a riskier foraging mode in the central, more protected areas of their groups. Central birds effectively used the more peripheral group members as sentinels, allowing them to exploit a wider range of resources within the same group at the same time. This finding provides a novel benefit of living in groups, which may have a broad relevance given that social foraging species often exploit a large array of resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号