首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impacts of mixing and stratification on the fate of primaryproduction were studied in an oligotrophic lake by comparingthe size-distributions of phytoplankton standing stock and productionin two basins, only one of which experiences seasonal thermalstratification. In both basins, the phytoplankton was dominatedby small cells (pico- and nanoplankton). The contribution ofpicoplankton to both biomass and production remained relativelyconstant throughout the season in both basins. Seasonal variationsin the size structure of phytoplankton communities do not agreewith the paradigm of dominance by small cells during summerstratification and dominance of larger cells during spring andfall mixing events. Nutrient control of productivity throughmixing and stratification is unlikely to affect the structureof phytoplankton communities when nutrients (allochthonous)derived from the catchment basin or sediments are in short supply.In such environments, nutrients (autochthonous) are largelyderived in the lake through heterotrophic food web processessuch as grazing, excretion and decomposition. Maximum ratesof production and losses in July and August in both basins areconsistent with increased regeneration and may represent a responseof larger-sized cells to higher nutrient availability resultingfrom enhanced grazing on picoplankton. The high correlationbetween the rates of loss and of potential growth for the phytoplanktoncommunity during all sampling periods, and the relative constancyof the picoplankton biomass, leads us to propose a long-term,steady-state equilibrium in the phytoplankton community underthe control of grazing by herbivores and/or other loss processes.  相似文献   

2.
Dickman EM  Vanni MJ  Horgan MJ 《Oecologia》2006,149(4):676-689
The stoichiometric composition of autotrophs can vary greatly in response to variation in light and nutrient availability, and can mediate ecological processes such as C sequestration, growth of herbivores, and nutrient cycling. We investigated light and nutrient effects on phytoplankton stoichiometry, employing five experiments on intact phytoplankton assemblages from three lakes varying in productivity and species composition. Each experiment employed two nutrient and eight irradiance levels in a fully factorial design. Light and nutrients interactively affected phytoplankton stoichiometry. Thus, phytoplankton C:N, C:P, and N:P ratios increased with irradiance, and slopes of the stoichiometric ratio versus irradiance relationships were steeper with ambient nutrients than with nutrients added. Our results support the light–nutrient hypothesis, which predicts that phytoplankton C:nutrient ratios are functions of the ratio of available light and nutrients; however, we observed considerable variation among lakes in the expression of this relationship. Phytoplankton species diversity was positively correlated with the slopes of the C:N and C:P versus irradiance relationships, suggesting that diverse assemblages may exhibit greater flexibility in the response of phytoplankton nutrient stoichiometry to light and nutrients. The interactive nature of light and nutrient effects may render it difficult to generate predictive models of stoichiometric responses to these two factors. Our results point to the need for future studies that examine stoichiometric responses across a wide range of phytoplankton communities.  相似文献   

3.
Global warming has revitalized interest in the relationship between body size and temperature, proposed by Bergmann's rule 150 years ago, one of the oldest manifestations of a ‘biogeography of traits’. We review biogeographic evidence, results from clonal cultures and recent micro‐ and mesocosm experiments with naturally mixed phytoplankton communities regarding the response of phytoplankton body size to temperature, either as a single factor or in combination with other factors such as grazing, nutrient limitation, and ocean acidification. Where possible, we also focus on the comparison between intraspecific size shifts and size shifts resulting from changes in species composition. Taken together, biogeographic evidence, community‐level experiments and single‐species experiments indicate that phytoplankton average cell sizes tend to become smaller in warmer waters, although temperature is not necessarily the proximate environmental factor driving size shifts. Indirect effects via nutrient supply and grazing are important and often dominate. In a substantial proportion of field studies, resource availability is seen as the only factor of relevance. Interspecific size effects are greater than intraspecific effects. Direct temperature effects tend to be exacerbated by indirect ones, if warming leads to intensified nutrient limitation or copepod grazing while ocean acidification tends to counteract the temperature effect on cell size in non‐calcifying phytoplankton. We discuss the implications of the temperature‐related size trends in a global‐warming context, based on known functional traits associated with phytoplankton size. These are a higher affinity for nutrients of smaller cells, highest maximal growth rates of moderately small phytoplankton (ca. 102 µm3), size‐related sensitivities for different types of grazers, and impacts on sinking rates. For a phytoplankton community increasingly dominated by smaller algae we predict that: (i) a higher proportion of primary production will be respired within the microbial food web; (ii) a smaller share of primary production will be channeled to the classic phytoplankton – crustacean zooplankton – fish food chain, thus leading to decreased ecological efficiency from a fish‐production point of view; (iii) a smaller share of primary production will be exported through sedimentation, thus leading to decreased efficiency of the biological carbon pump.  相似文献   

4.
5.
Water-column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, nutrient status and the plankton community structure, and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water-column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water-column mixing that provoked a substantial nutrient input into the euphotic zone led to a strong net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones because of the greater contribution of a few fast-growing species. After the second mixing event, at a high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged because enhanced growth of small fast-growing phytoplankton was prevented by zooplankton grazing. Bacterial abundance did not increase after the second mixing, when cladoceran biomass was high. Changes in rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water-column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community via enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacterial growth, but the effects on biomass may be damped by high levels of herbivory. Received: 3 May 1999 / Accepted: 13 April 2000  相似文献   

6.
Introduction of strictly planktivorous fish to lakes can alter plankton communities via cascading interactions in food webs. Less is known about the large-scale and long-term effects resulting from the introduction of fish with more generalist feeding habits, and the extent to which these effects depend on lake trophic status. Paleolimnological records of three oligotrophic lakes in Maine, USA were used to analyze the response of plankton communities to the introduction of white perch (Morone americana), a fish that often numerically dominates fish assemblages and switches from strict planktivory to a more generalist diet during ontogeny. After white perch introduction, cladoceran ephippia size increased up to 50 %, suggesting that the most important role of this generalist fish, with respect to water quality, is as a piscivorous trophic link. Algal standing crop declined by a quarter to over a half of pre-introduction levels, suggesting that top-down effects of white perch reduced phytoplankton biomass. In comparing these oligotrophic lakes to prior work in a eutrophic system, white perch introduction had similar effects on zooplankton body size; however, cascading effects to phytoplankton were only observed in low productivity lakes.  相似文献   

7.
We studied phytoplankton community and succession in Lake Dishui, the largest man-made coastal lake in China. The lake experienced drastic changes in physicochemical conditions since its creation in 2003. Monthly phytoplankton communities were characterized between 2006 and 2011. A two-dimensional solution of nonmetric multidimensional scaling clearly delineated four groups of distinct phytoplankton community structure. Indicator species analysis showed that Group I (2006–2008) was characterized by mainly nanoplankton including Chromulina pygmaea. Group II (2009) was characterized by nonmotile, unicellular, elongated, or filamentous taxa, which are resistant to grazing pressure due to their large size. Group III (winter–early spring since 2010) was characterized by many motile taxa. The most characteristic taxa in Group IV (summer–autumn since 2010) were the flagellate algae. Seasonal variation in phytoplankton community was highest after 2010. Changes in phytoplankton communities may closely reflect rapid changes in lake environmental conditions such as desalination and nutrient enrichment.  相似文献   

8.
The influence of the size distribution of phytoplankton on changes in the planktonic food web structures with eutrophication was examined using natural planktonic communities in two world-famous lakes: Lake Baikal and Lake Biwa. The size distribution of phytoplankton and the ratio of heterotrophic to autotrophic biomass (H/A ratio), indicating the balance between primary production and its consumption, were investigated in the lakes of different trophic status. The results revealed that microphytoplankton (>20μm) in mesotrophic Lake Biwa, and picophytoplankton (<2μm) or nanophytoplankton (2–20μm) in oligotrophic Lake Baikal, comprised the highest proportion of the total phytoplankton biomass. The H/A ratio was lower in Lake Biwa (<1) than in Lake Baikal (>1). The low H/A ratio in Lake Biwa appeared to be the consequence of the lack of consumption of the more abundant microphytoplankton, which were inferior competitors in nutrient uptake under oligotrophic conditions but less vulnerable to grazing. As a result, unconsumed microphytoplankton accumulated in the water column, decreasing the H/A ratio in Lake Biwa. Our results showed that food web structure and energy flow in planktonic communities were greatly influenced by the size distribution of phytoplankton, in conjunction with bottom-up (nutrient uptake) and top-down (grazing) effects at the trophic level of primary producers.  相似文献   

9.
Dag O. Hessen 《Hydrobiologia》1992,229(1):115-123
Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding zooplankton species, further stressing the role of humus DOC in overall lake productivity. The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequent CO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.  相似文献   

10.
During August, 1987, we performed a series of Limnocorral experiments in lake La Caldera, a small winter-kill lake in which phytoplankton is strikingly nutrient-limited. The effects of biomanipulation on zooplankton-phytoplankton relationships were assessed by monitoring both individual species and whole-assemblage responses. Two sizes of enclosures were used (15 and 350 litres) and two treatments were assayed: 1) removal of zooplankton by 45 μm filter net and 2) doubling the natural grazing pressure by increasing the zooplankton concentration. Results show the two enclosure types to differ strikingly: flagellates disappeared from the small enclosures, resulting in four- to six-fold changes in chlorophylla concentration and three- to four-fold changes in number of individuals. Most species were grazed (a prey selectivity based on criteria other than size was observed) and their net growth rate increased with zooplankton concentration, causing a net increase in the phytoplankton growth, a stimulatory effect probably through nutrient regeneration that overrides the losses due to grazing.  相似文献   

11.
Nelson CE  Carlson CA 《PloS one》2011,6(3):e18320
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes.  相似文献   

12.
1. In situ enclosure experiments were performed in the mesotrophic Bermejales reservoir to evaluate the algal response to changes in the nutrient supply and in the zooplankton size structure and density in a 2 × 2 factorial design. The experiments were conducted during the spring bloom of nanoplanktonic diatoms in 1989. 2. Nutrient enrichment promoted a great increase of phytoplankton biomass indicating a strong nutrient limitation on phytoplankton growth. Total phytoplankton biomass was significantly lower in the Daphina-added enclosures at a given nutrient level and strong direct an indirect effect of zooplankton on phytoplankton community structure and nutrient availability were observed. 3. Most of the nanoplanktonic species were effectively grazed but species with protective coverings and large size colonies were favoured by grazers and small chlorococcales were unaffected probably because of their compensatory high growth rates. The decrease in total biomass imposed by grazers is attributable mainly to the decrease of Cyclotella ocellata, the most abundant species. This taxon suffers two net effects of zooplankton: direct grazing and the indirect decrease of Si availability caused by the growth of C. ocellata which was promoted by P excretion by zooplankton. Indirect effects of grazers on Si availability should, therefore, be taken into account in explaining phytoplankton succession and community structure. 4. In this experiment grazers affected considerably the nanoplanktonic community in Bermejales reservoir. The extent which they were affected, however, depended not only on the algal size as a determinant of edibility but also greatly on the specific nutrient requirements and taxonomic features of the algal species.  相似文献   

13.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

14.
Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi‐trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient‐replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.  相似文献   

15.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

16.
气候变化和放牧活动对草地植物物种多样性和生产力具有重要影响。为探索藏北高寒草地植物物种多样性和生产力对增温、放牧及其交互作用的响应, 于2011年在藏北高原开始建立增温实验平台, 2016年起增设放牧、增温+放牧实验, 连续2年(2016-2017年)观测了植物群落特征、群落组成、生产力和物种多样性。结果表明, 增温和放牧对高寒草地植物高度和净初级生产力具有显著交互作用。在放牧条件下, 增温对植物高度无显著影响; 但在不放牧条件下, 增温却显著增加了植物高度。在放牧条件下, 增温对净初级生产力的影响存在年际差异, 2016年增温对生产力无显著影响, 2017年增温显著降低了植物净初级生产力; 但在不放牧条件下, 增温对植物净初级生产力无显著影响。增温和放牧对高寒草地植物物种丰富度、盖度、重要值及多样性均无显著交互作用。植物盖度在增温和放牧条件下显著降低, 杂类草物种比例显著增加, 但物种多样性均无显著变化。研究表明, 增温和放牧显著改变高寒草地群落结构。未来气候变化条件下, 放牧活动加剧有可能导致高寒草地生产力降低。  相似文献   

17.
This work constitutes the first floristic and ecological analysis of the phytoplankton community of a volcanic freshwater lake in Deception Island (62°57′S, 60°38′W, South Shetland Islands, Antarctica). The main limnological features and phytoplankton size fractions were analyzed. Samples were taken during the austral summer of 2002 at two opposite sites. According to ANOVA results performed with abiotic variables, no significant differences between sites were found. The phytoplankton community showed low algal species richness, with an important contribution of the tychoplanktonic taxa. In terms of species number, Bacillariophyceae was the dominant class. Autotrophic picoplankton registered the highest densities from the second sampling date onwards. Nanophytoplankton was represented by unidentified chrysophycean organisms, which showed different distribution patterns between sites. The net phytoplankton abundance remained low during the sampling period and was strongly correlated with chlorophyll a concentration. Both nutrient concentrations and chlorophyll a values indicated oligotrophic conditions.  相似文献   

18.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

19.
20.
The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growing season in 11 lakes situated along an altitudinal/climate gradient with low N‐deposition (<1 kg N ha?1 yr?1) in northern subarctic Sweden. Short‐term bioassay experiments with N‐ and P‐additions revealed that phytoplankton in high‐alpine lakes were more prone to P‐limitation, and with decreasing altitude became increasingly N‐ and NP‐colimited. Nutrient limitation was additionally most obvious in midsummer. There was also a strong positive correlation between phytoplankton growth and water temperature in the bioassays. Although excess nutrients were available in spring and autumn, on these occasions growth was likely constrained by low water temperatures. These results imply that enhanced N‐deposition over the Swedish mountain areas will, with the exception of high‐alpine lakes, enhance biomass and drive phytoplankton from N‐ to P‐limitation. However, if not accompanied by warming, N‐input from deposition will stimulate limited phytoplankton growth due to low water temperatures during large parts of the growing season. Direct effects of warming, allowing increased metabolic rates and an extension of the growing season, seem equally crucial to synergistically enhance phytoplankton development in these lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号