首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄海宁  黄乾生 《微生物学报》2022,62(5):1613-1628
胞外囊泡(extracellular vesicles,EVs)是自然界中细胞生命活动的产物,是一种包裹核酸、蛋白、脂类等分子的纳米级磷脂双分子层颗粒。近年来,越来越多的研究证实细菌可以分泌EVs作为抗生素和噬菌体的“诱饵”,从而发挥防御功能;此外,EVs还在传递毒力因子、细胞间通讯、介导基因水平转移、营养和电子传递、促进生物膜的形成中发挥重要作用。因此,EVs对生物个体和群体都具有十分重要的作用。本文综述了细菌EVs形成机制、提取及鉴定方法、影响EVs分泌的因素等,重点总结了EVs的生物学功能以及在环境科学领域的研究进展,为EVs的进一步研究提供参考。  相似文献   

2.
3.
Recently, many studies have investigated the role of extracellular vesicles (EVs) on reproductive events, including embryo development and death, oviduct–embryo crosstalk, in vitro fertilization and others. The aim of this study was to demonstrate whether outgrowth embryo–derived EVs function as bioactive molecules and regulate mouse embryonic developmental competence in vitro and implantation potential in utero. The EVs from mouse outgrowth embryos on 7.5 days postcoitum were detected and selectively isolated to evaluate the embryotrophic functions on preimplantation embryos. Developmental outcomes such as the percentage of blastocyst formation, hatching, and trophoblastic outgrowth were assessed. Furthermore, the total cell number and apoptotic index of blastocysts, which were incubated with EVs during the culture period, were evaluated by fluorescence microscopy. Implantation potential in utero was investigated following embryo transfer. The EVs from outgrowth embryo–conditioned media have rounded membrane structures that range in diameter from 20 to 225 nm. Incubation with EVs improved preimplantation embryonic development by increasing cell proliferation and decreasing apoptosis in blastocysts. Moreover, the implantation rates following embryo transfer were significantly higher in EV–supplemented embryos compared with the control. Collectively, EVs from outgrowth embryo could enhance the embryonic developmental competence and even implantation potential in mice.  相似文献   

4.
Exosomes, nano‐sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC‐peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T‐cell activation in vitro. When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN‐γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN‐γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles.  相似文献   

5.
The mitochondrial free radical theory of aging suggests that accumulating oxidative damage to mitochondria and mitochondrial DNA (mtDNA) plays a central role in aging. Circulating cell‐free mtDNA (ccf‐mtDNA) isolated from blood may be a biomarker of disease. Extracellular vesicles (EVs) are small (30–400 nm), lipid‐bound vesicles capable of shuttling proteins, nucleic acids, and lipids as part of intercellular communication systems. Here, we report that a portion of ccf‐mtDNA in plasma is encapsulated in EVs. To address whether EV mtDNA levels change with human age, we analyzed mtDNA in EVs from individuals aged 30–64 years cross‐sectionally and longitudinally. EV mtDNA levels decreased with age. Furthermore, the maximal mitochondrial respiration of cultured cells was differentially affected by EVs from old and young donors. Our results suggest that plasma mtDNA is present in EVs, that the level of EV‐derived mtDNA is associated with age, and that EVs affect mitochondrial energetics in an EV age‐dependent manner.  相似文献   

6.
Bone marrow‐derived mesenchymal stem cell (BMSC)‐derived small extracellular vesicles (sEVs) are potent candidates for the suppression of acute rejection post‐renal allograft and have been reported to halt dendritic cells (DCs) maturation. However, whether BMSC‐derived sEVs mitigate acute rejection post‐renal allograft by targeting DCs is still unclear. In this study, donor BMSC‐derived sEVs (sEVs) relieved the inflammatory response and suppressed mature DCs (mDCs) location in kidney grafts, and increased regulatory T (Treg) cell population in the spleens of the rats that underwent kidney allograft. In lipopolysaccharide (LPS)‐stimulated immature DCs (imDCs), sEVs suppressed the maturation and migration of DCs and inactivated toll‐like receptor 4 (TLR4) signaling. Compared with LPS‐treated imDCs, imDCs treated with LPS+sEVs promoted CD4+T cells differentiated toward Treg cells. Subsequently, we found that Loc108349490, a long non‐coding RNA (lncRNA) abundant in sEVs, mediated the inhibitory effect of sEVs on DC maturation and migration by promoting TLR4 ubiquitination. In rats that underwent an allograft, Loc108349490 deficiency weakened the therapeutic effect of sEVs on acute rejection. The present study firstly found that sEVs alleviated acute rejection post‐renal allograft by transferring lncRNA to DCs and screened out the functional lncRNA loaded in sEVs was Loc108349490.  相似文献   

7.
The occurrence and development of acute lung injury (ALI) involve a variety of pathological factors and complex mechanisms. How pulmonary cells communicate with each other and subsequently trigger an inflammatory cascade remains elusive. Extracellular vesicles (EVs) are a critical class of membrane-bound structures that have been widely investigated for their roles in pathophysiological processes, especially in immune responses and tumor progression. Most of the current knowledge of the functions of EVs is related to functions derived from viable cells (e.g., microvesicles and exosomes) or apoptotic cells (e.g., apoptotic bodies); however, there is limited understanding of the rapidly progressing inflammatory response in ALI. Herein, a comprehensive analysis of micron-sized EVs revealed a mass production of 1-5 μm pyroptotic bodies (PyrBDs) release in the early phase of ALI induced by lipopolysaccharide (LPS). Alveolar macrophages were the main source of PyrBDs in the early phase of ALI, and the formation and release of PyrBDs were dependent on caspase-1. Furthermore, PyrBDs promoted the activation of epithelial cells, induced vascular leakage and recruited neutrophils through delivery of damage-associated molecular patterns (DAMPs). Collectively, these findings suggest that PyrBDs are mainly released by macrophages in a caspase-1-dependent manner and serve as mediators of LPS-induced ALI.  相似文献   

8.
New insight into the role of extracellular vesicles in kidney disease   总被引:1,自引:0,他引:1  
Extracellular vesicles (EVs) are released to maintain cellular homeostasis as well as to mediate cell communication by spreading protective or injury signals to neighbour or remote cells. In kidney, increasing evidence support that EVs are signalling vesicles for different segments of tubules, intra‐glomerular, glomerular‐tubule and tubule‐interstitial communication. EVs released by kidney resident and infiltrating cells can be isolated from urine and were found to be promising biomarkers for kidney disease, reflecting deterioration of renal function and histological change. We have here summarized the recent progress about the functional role of EVs in kidney disease as well as challenges and future directions involved.  相似文献   

9.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro.  相似文献   

10.
11.
The current standard biomarker for myocardial infarction (MI) is high‐sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched‐controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface‐epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non‐inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.  相似文献   

12.
Extracellular vesicles (EVs) are emerging as key players in intercellular communication. Few studies have focused on EV levels in subjects with sleep disorders. Here, we aimed to explore the role of acute sleep deprivation on the quantity and functionality of circulating EVs, and their tissue distribution. EVs were isolated by ultracentrifugation from the plasma of volunteers and animals undergoing one night of sleep deprivation. Arterio‐venous shunt, FeCl3 thrombus test and thrombin‐induced platelet aggregation assay were conducted to evaluate the in vivo and in vitro bioactivity of small EVs. Western blotting was performed to measure the expression of EV proteins. The fate and distribution of circulating small EVs were determined by intravital imaging. We found that one night of sleep deprivation triggers release of small EVs into the circulation in both healthy individuals and animals. Injection of sleep deprivation‐liberated small EVs into animals increased thrombus formation and weight in thrombosis models. Also, sleep deprivation‐liberated small EVs promoted platelet aggregation induced by thrombin. Mechanistically, sleep deprivation increased the levels of HMGB1 protein in small EVs, which play important roles in platelet activation. Furthermore, we found sleep deprivation‐liberated small EVs are more readily localize in the liver. These data suggested that one night of sleep deprivation is a stress for small EV release, and small EVs released here may increase the risk of thrombosis. Further, small EVs may be implicated in long distance signalling during sleep deprivation‐mediated adaptation processes.  相似文献   

13.
Extracellular vesicles (EVs) are nano-sized vesicles, released from many cell types including cardiac cells, have recently emerged as intercellular communication tools in cell dynamics. EVs are an important mediator of signaling within cells that influencing the functional behavior of the target cells. In heart complex, cardiac cells can easily use EVs to transport bioactive molecules such as proteins, lipids, and RNAs to the regulation of neighboring cell function. Cross-talk between intracardiac cells plays pivotal roles in the heart homeostasis and in adaptive responses of the heart to stress. EVs were released by cardiomyocytes under baseline conditions, but stress condition such as hypoxia intensifies secretome capacity. EVs secreted by cardiac progenitor cells and cardiosphere-derived cells could be pinpointed as important mediators of cardioprotection and cardiogenesis. Furthermore, EVs from many different types of stem cells could potentially exert a therapeutic effect on the damaged heart. Recent evidence shows that cardiac-derived EVs are rich in microRNAs, suggesting a key role in the controlling of cellular processes. EVs harboring exosomes may be clinically useful in cell-free therapy approaches and potentially act as prognosis and diagnosis biomarkers of cardiovascular diseases.  相似文献   

14.
Atherosclerosis has been regarded as a major contributor to cardiovascular disease. The role of extracellular vesicles (EVs) in the treatment of atherosclerosis has been increasingly reported. In this study, we set out to investigate the effect of macrophages‐derived EVs (M‐EVs) containing miR‐19b‐3p in the progression of atherosclerosis, with the involvement of JAZF1. Following isolation of EVs from macrophages, the M‐EVs were induced with ox‐low density lipoprotein (LDL) (ox‐LDL‐M‐EVs), and co‐cultured with vascular smooth muscle cells (VSMCs). RT‐qPCR and western blot assay were performed to determine the expression of miR‐19b‐3p and JAZF1 in M‐EVs and in VSMCs. Lentiviral infection was used to overexpress or knock down miR‐19b‐3p. EdU staining and scratch test were conducted to examine VSMC proliferation and migration. Dual‐luciferase gene reporter assay was performed to examine the relationship between miR‐19b‐3p and JAZF1. In order to explore the role of ox‐LDL‐M‐EVs carrying miR‐19b‐3p in atherosclerotic lesions in vivo, a mouse model of atherosclerosis was established through high‐fat diet induction. M‐EVs were internalized by VSMCs. VSMC migration and proliferation were promoted by ox‐LDL‐M‐EVs. miR‐19b‐3p displayed upregulation in ox‐LDL‐M‐EVs. miR‐19b‐3p was transferred by M‐EVs into VSMCs, thereby promoting VSMC migration and proliferation. mir‐19b‐3p targeted JAZF1 to decrease its expression in VSMCs. Atherosclerosis lesions were aggravated by ox‐LDL‐M‐EVs carrying miR‐19b‐3p in ApoE−/− mice. Collectively, this study demonstrates that M‐EVs containing miR‐19b‐3p accelerate migration and promotion of VSMCs through targeting JAZF1, which promotes the development of atherosclerosis.  相似文献   

15.
Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM‐MSCs from young mice prolonged life span and health span, and conditioned media (CM) from young BM‐MSCs rescued the function of aged stem cells and senescent fibroblasts. Extracellular vesicles (EVs) from young BM‐MSC CM extended life span of Ercc1 −/− mice similarly to injection of young BM‐MSCs. Finally, treatment with EVs from MSCs generated from human ES cells reduced senescence in culture and in vivo, and improved health span. Thus, MSC EVs represent an effective and safe approach for conferring the therapeutic effects of adult stem cells, avoiding the risks of tumor development and donor cell rejection. These results demonstrate that MSC‐derived EVs are highly effective senotherapeutics, slowing the progression of aging, and diseases driven by cellular senescence.  相似文献   

16.
We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non‐epithelial spaces (stroma) of many organs (see www.telocytes.com ). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB‐SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB‐SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon‐like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB‐SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc.  相似文献   

17.
Extracellular vesicles (EVs) are abundant, lipid‐enclosed vectors that contain nucleic acids and proteins, they can be secreted from donor cells and freely circulate, and they can be engulfed by recipient cells thus enabling systemic communication between heterotypic cell types. However, genetic tools for labeling, isolating, and auditing cell type‐specific EVs in vivo, without prior in vitro manipulation, are lacking. We have used CRISPR‐Cas9‐mediated genome editing to generate mice bearing a CD63‐emGFPloxP/stop/loxP knock‐in cassette that enables the specific labeling of circulating CD63+ vesicles from any cell type when crossed with lineage‐specific Cre recombinase driver mice. As proof‐of‐principle, we have crossed these mice with Cdh5‐CreERT2 mice to generate CD63emGFP+ vasculature. Using these mice, we show that developing vasculature is marked with emerald GFP (emGFP) following tamoxifen administration to pregnant females. In adult mice, quiescent vasculature and angiogenic vasculature (in tumors) is also marked with emGFP. Moreover, whole plasma‐purified EVs contain a subpopulation of emGFP+ vesicles that are derived from the endothelium, co‐express additional EV (e.g., CD9 and CD81) and endothelial cell (e.g., CD105) markers, and they harbor specific miRNAs (e.g., miR‐126, miR‐30c, and miR‐125b). This new mouse strain should be a useful genetic tool for generating cell type‐specific, CD63+ EVs that freely circulate in serum and can subsequently be isolated and characterized using standard methodologies.  相似文献   

18.
In normal pregnancy, hepatic metabolism adaptation occurs with an increase in lipid biosynthesis. Placental shedding of syncytiotrophoblast‐derived extracellular vesicles (STBEVs) into the maternal circulation constitutes a major signalling mechanism between foetus and mother. We investigated whether STBEVs from normal pregnant women might target liver cells in vitro and induce changes in lipid synthesis. This study was performed at the Nuffield Department of Women''s & Reproductive Health, Oxford, UK. STBEVs were obtained by dual‐lobe placental perfusion from 11 normal pregnancies at term. Medium/large and small STBEVs were collected by ultracentrifugation at 10,000g and 150,000g, respectively. STBEVs were analysed by Western blot analysis and flow cytometry for co‐expression of apolipoprotein‐E (apoE) and placental alkaline phosphatase (PLAP). The uptake of STBEVs by liver cells and the effect on lipid metabolism was evaluated using a hepatocarcinoma cell line (HepG2 cells). Data were analysed by one‐way ANOVA and Student''s t test. We demonstrated that: (a) STBEVs carry apoE; (b) HepG2 cells take up STBEVs through an apoE‐LDL receptor interaction; (c) STBEV incorporation into HepG2 cells resulted in (i) increased cholesterol release (ELISA); (ii) increased expression of the genes SQLE and FDPS (microarray) involved in cholesterol biosynthesis; (iii) downregulation of the CLOCK gene (microarray and PCR), involved in the circadian negative control of lipid synthesis in liver cells. In conclusion, the placenta may orchestrate the metabolic adaptation of the maternal liver through release of apoE‐positive STBEVs, by increasing lipid synthesis in a circadian‐independent fashion, meeting the nutritional needs of the growing foetus.  相似文献   

19.
Aging is associated with a loss of metabolic homeostasis, with cofactors such as nicotinamide adenine dinucleotide (NAD+) declining over time. The decrease in NAD+ production has been linked to the age‐related loss of circulating extracellular nicotinamide phosphoribosyltransferase (eNAMPT), the rate‐limiting enzyme in the NAD+ biosynthetic pathway. eNAMPT is found almost exclusively in extracellular vesicles (EVs), providing a mechanism for the distribution of the enzyme in different tissues. Currently, the physiological cause for the release of eNAMPT is unknown, and how it may be affected by age and physical exercise. Here, we show that release of small EVs into the bloodstream is stimulated following moderate intensity exercise in humans. Exercise also increased the eNAMPT content in EVs, most prominently in young individuals with higher aerobic fitness. Both mature fit and young unfit individuals exhibited a limited increase in EV‐eNAMPT release following exercise, indicating that this mechanism is related to both the age and physical fitness of a person. Notably, unfit mature individuals were unable to increase the release of eNAMPT in EVs after exercise, suggesting that lower fitness levels and aging attenuate this important signalling mechanism in the body. EVs isolated from exercising humans containing eNAMPT were able to alter the abundance of NAD+ and SIRT1 activity in recipient cells compared to pre‐exercise EVs, indicating a pathway for inter‐tissue signalling promoted through exercise. Our results suggest a mechanism to limit age‐related NAD+ decline, through the systemic delivery of eNAMPT via EVs released during exercise.  相似文献   

20.
Pancreatic tumors are highly desmoplastic and poorly-vascularized, and therefore must develop adaptive mechanisms to sustain their survival under hypoxic condition. Extracellular vesicles (EV) play vital roles in pancreatic tumor pathobiology by facilitating intercellular communication. Here we studied the effect of hypoxia on the release of EVs and examined their role in adaptive survival of pancreatic cancer (PC) cells. Hypoxia promoted the release of EV in PC cell lines, MiaPaCa and AsPC1, wherein former exhibited a far greater induction. Moreover, a time-dependent, measurable and significant increase was recorded for small EV (SEV) in both the cell lines with only minimal induction observed for medium (MEV) and large EVs (LEV). Similarly, noticeable changes in size distribution of SEV were also recorded with a shift toward smaller average size under extreme hypoxia. Thrombospondin (apoptotic bodies marker) was exclusively detected on LEVs, while Arf6 (microvesicles marker) was mostly present on MEV with some expression in LEV as well. However, CD9 and CD63 (exosome markers) were expressed in both SEV and MEVs with a decreased expression recorded under hypoxia. Among all subfractions, SEV was the most bioactive in promoting the survival of hypoxic PC cells and hypoxia-inducible factor-1α stabilization was involved in heightened EV release under hypoxia and for their potency to promote hypoxic cell survival. Altogether, our findings provide a novel mechanism for the adaptive hypoxic survival of PC cells and should serve as the basis for future investigations on broader functional implications of EV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号