首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals’ susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin‐conjugated proteins with consistently higher levels found in back reef source colonies both pre and post‐transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P < 0.0001, FST = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes.  相似文献   

2.
Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef‐building coral species. In this study, we apply a genotyping‐by‐sequencing approach to investigate genome‐wide patterns of genetic diversity, gene flow, and local adaptation in a reef‐building coral, Pocillopora damicornis, across 10 degrees of latitude and a transition from temperate to tropical waters. We identified strong patterns of differentiation and reduced genetic diversity in high‐latitude populations. In addition, genome‐wide scans for selection identified a number of outlier loci putatively under directional selection with homology to proteins previously known to be involved in heat tolerance in corals and associated with processes such as photoprotection, protein degradation, and immunity. This study provides genomic evidence for both restricted gene flow and local adaptation in a widely distributed coral species, and highlights the potential vulnerability of leading‐edge populations to rapid environmental change as they are locally adapted, reproductively isolated, and have reduced levels of genetic diversity.  相似文献   

3.
The concept of ecological succession has been frequently applied in the study of ancient reefs. Whereas Paleozoic and Mesozoic reefs are commonly thought to reveal an autogenic primary—climax zonation, patterns in Neogene and Quaternary reefs are much more diverse. Here, we describe a well-preserved late Pleistocene coral reef from Dahab on Sinai Peninsula (Egypt), which shows a distinct zonation that resembles an ecological succession. In contrast to classical examples of ecological successions, species composition, paleoenvironmental conditions, and coral biodiversity of the Dahab reef indicate an allogenic, sea-level controlled community change, from marginal marine to reef slope and back reef. A review of the literature confirms that autogenic, short-term successions are virtually absent in Quaternary reefs. We predict that long generation times of corals make it unlikely that classical autogenic successions develop in reefs at all, unless environmental conditions are unusually stable.  相似文献   

4.
Genetic structure within marine species may be driven by local adaptation to their environment, or alternatively by historical processes, such as geographic isolation. The gulfs and seas bordering the Arabian Peninsula offer an ideal setting to examine connectivity patterns in coral reef fishes with respect to environmental gradients and vicariance. The Red Sea is characterized by a unique marine fauna, historical periods of desiccation and isolation, as well as environmental gradients in salinity, temperature, and primary productivity that vary both by latitude and by season. The adjacent Arabian Sea is characterized by a sharper environmental gradient, ranging from extensive coral cover and warm temperatures in the southwest, to sparse coral cover, cooler temperatures, and seasonal upwelling in the northeast. Reef fish, however, are not confined to these seas, with some Red Sea fishes extending varying distances into the northern Arabian Sea, while their pelagic larvae are presumably capable of much greater dispersal. These species must therefore cope with a diversity of conditions that invoke the possibility of steep clines in natural selection. Here, we test for genetic structure in two widespread reef fish species (a butterflyfish and surgeonfish) and eight range‐restricted butterflyfishes across the Red Sea and Arabian Sea using genome‐wide single nucleotide polymorphisms. We performed multiple matrix regression with randomization analyses on genetic distances for all species, as well as reconstructed scenarios for population subdivision in the species with signatures of isolation. We found that (a) widespread species displayed more genetic subdivision than regional endemics and (b) this genetic structure was not correlated with contemporary environmental parameters but instead may reflect historical events. We propose that the endemic species may be adapted to a diversity of local conditions, but the widespread species are instead subject to ecological filtering where different combinations of genotypes persist under divergent ecological regimes.  相似文献   

5.
6.
Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less able to respond to climate change-induced sea-level changes.  相似文献   

7.
Sponge faunas from coral reefs and mangrove ecosystems in the Caribbean have mostly been studied from an ecological perspective, with researchers considering the effects of physical and biological factors on their species distribution. To discern evolutionary patterns, this study analyzed the systematic composition, taxonomic diversity, and ecological properties (reproductive strategies, size, shape, endosymbiosis) of mangrove and reef sponge assemblages from seven distant Caribbean localities. Species composition was compared by use of cluster analysis (Sørensen’s), and taxonomic diversity by use of the biodiversity index average taxonomic distinctness (AvTD). Mangrove and reef-associated sponge faunas were found to be statistically dissimilar, with the AvTD values suggesting stronger taxonomic bias toward specific groups in mangroves, irrespective of geographic distance. Most Demospongiae orders have 30–50% more species in coral reefs than in mangroves. The richest reef genera (Agelas, Aplysina, Callyspongia, Petrosia, and Xestospongia) rarely colonize contiguous mangrove formations. The distribution and diversity of suprageneric taxa suggest that coral reef sponge assemblages might represent an older fauna. This historical interpretation would place mangrove subtidal habitats as the youngest marine ecosystem, rather than a below-optimum ecosystem. Life history traits support a biological split discussed here from the perspective of distinct evolutionary histories and different environmental conditions.  相似文献   

8.
Ecological speciation in tropical reef fishes   总被引:20,自引:0,他引:20  
The high biodiversity in tropical seas provides a long-standing challenge to allopatric speciation models. Physical barriers are few in the ocean and larval dispersal is often extensive, a combination that should reduce opportunities for speciation. Yet coral reefs are among the most species-rich habitats in the world, indicating evolutionary processes beyond conventional allopatry. In a survey of mtDNA sequences of five congeneric west Atlantic reef fishes (wrasses, genus Halichoeres) with similar dispersal potential, we observed phylogeographical patterns that contradict expectations of geographical isolation, and instead indicate a role for ecological speciation. In Halichoeres bivittatus and the species pair Halichoeres radiatus/brasiliensis, we observed strong partitions (3.4% and 2.3% divergence, respectively) between adjacent and ecologically distinct habitats, but high genetic connectivity between similar habitats separated by thousands of kilometres. This habitat partitioning is maintained even at a local scale where H. bivittatus lineages are segregated between cold- and warm-water habitats in both Bermuda and Florida. The concordance of evolutionary partitions with habitat types, rather than conventional biogeographical barriers, indicates parapatric ecological speciation, in which adaptation to alternative environmental conditions in adjacent locations overwhelms the homogenizing effect of dispersal. This mechanism can explain the long-standing enigma of high biodiversity in coral reef faunas.  相似文献   

9.
Coral reefs are threatened with worldwide decline from multiple factors, chief among them climate change ( Hughes et al. 2003 ; Hoegh‐Guldberg et al. 2007 ). The foundation of coral reefs is an endosymbiosis between coral hosts and their resident photosynthetic dinoflagellates (genus Symbiodinium) and this partnership (or holobiont) is exquisitely sensitive to temperature stress. The primary response to hyperthermic stress is coral bleaching, which is the loss of symbionts from coral tissues—the collapse of the symbiosis ( Weis 2008 ). Bleaching can result in increased coral mortality which can ultimately lead to severely compromised reef health ( Hoegh‐Guldberg et al. 2007 ). Despite this grim picture of coral bleaching and reef degradation, coral susceptibility to stress and bleaching is highly variable ( Coles & Brown 2003 ). There is enormous interest in discovering the factors that determine susceptibility in order to help us predict if and how corals will survive a period of rapid global warming. In this issue, Barshis et al. (2010) examine the ecophysiological and genetic basis for differential responses to stress in Porites lobata in American Samoa. They combine a reciprocal transplant experimental design between two neighbouring, but very different reef environments with state‐of‐the‐art physiological biomarkers and molecular genetic markers for both partners to tease apart the contribution of environmental and fixed influences on stress susceptibility. Their results suggest the presence of a fixed, rather than environmental effect on expression of ubiquitin conjugates, one key marker for physiological stress response. In addition, the authors show genetic differentiation in host populations between the two sites suggesting strong selection for physiological adaptation to differing environments across small geographic distances. These conclusions point the study of coral resilience and susceptibility in a new direction.  相似文献   

10.
The intimate relationship between scleractinian corals and their associated microorganisms is fundamental to healthy coral reef ecosystems. Coral-associated microbes (Symbiodiniaceae and other protists, bacteria, archaea, fungi and viruses) support coral health and resilience through metabolite transfer, inter-partner signalling, and genetic exchange. However, much of our understanding of the coral holobiont relationship has come from studies that have investigated either coral-Symbiodiniaceae or coral-bacteria interactions in isolation, while relatively little research has focused on other ecological and metabolic interactions potentially occurring within the coral multi-partner symbiotic network. Recent evidences of intimate coupling between phytoplankton and bacteria have demonstrated that obligate resource exchange between partners fundamentally drives their ecological success. Here, we posit that similar associations with bacterial consortia regulate Symbiodiniaceae productivity and are in turn central to the health of corals. Indeed, we propose that this bacteria-Symbiodiniaceae-coral relationship underpins the coral holobiont's nutrition, stress tolerance and potentially influences the future survival of coral reef ecosystems under changing environmental conditions. Resolving Symbiodiniaceae-bacteria associations is therefore a logical next step towards understanding the complex multi-partner interactions occurring in the coral holobiont.  相似文献   

11.
Global climate change is increasingly considered one of the major threats to tropical coastal fisheries, potentially undermining important revenue and food security provided by coral reef ecosystems. While there has been significant and increasing work on understanding specific effects of climate change on coral reef fishes, few studies have considered large-bodied fisheries target species, limiting understanding of the effects of climate change on tropical fisheries. This review focuses on coral grouper (Plectropomus spp., and mainly Plectropomus leopardus), which are heavily fished throughout the Indian and Pacific oceans, and represent an exemplar group to assess potential effects of climate change on coral reef fisheries. In experimental studies, P. leopardus appear to be extremely sensitive to increasing ocean temperature, exhibiting declines in survivorship, aerobic scope and activity with relatively moderate increases in temperature. As such, ongoing ocean warming may jeopardize the catchability of coral grouper and sustainability of reef-based fisheries, especially at low latitudes. Notably, a significant portion of wild stocks of P. leopardus are already exposed to temperatures (≥30 °C) that have been shown to compromise individual performance and body condition. While there are considerable knowledge gaps in predicting effects of global climate change on coral grouper, such as their capacity to avoid, acclimate or adapt to changes in local environmental conditions, current information suggests that there is cause for concern. As such, we take the formative steps to outline both ecological and socioeconomic adaptations that could reduce vulnerability of coral reef fisheries to climate impacts on stocks of coral grouper, using a linked socio-economic framework.  相似文献   

12.
高菲  许强  李秀保  何林文  王爱民 《生态学报》2022,42(11):4301-4312
珊瑚礁生态系统是一个高生产力、高生物多样性的特殊海洋生态系统,具有为生物提供栖息地、参与生物地球化学循环、防浪护岸、指示水体污染程度等生态功能。珊瑚礁生态系统的突出特点是其生境异质性很高,各种各样的生境斑块为种类繁多、习性各异的游泳和底栖生物提供栖息场所,这些礁栖生物通过参与各项生态过程而形成各种特定的功能群,共同完成重要的生态功能。在热带珊瑚礁生态系统中,海参是大型底栖动物区系的重要一员。种类繁多的海参具有各自不同的生境选择特征,通过摄食、运动等行为活动发挥着改良底质、促进有机物矿化和营养盐再生等生态作用。近几年来,全球热带海参受人类过度捕捞和珊瑚礁退化的影响而面临资源衰退、物种多样性丧失等问题,深入认识其生态学功能、加强热带海参资源保护迫在眉睫。综述了国内外热带珊瑚礁海参的基础生态学研究进展:海参对珊瑚礁生境斑块呈现显著的偏好选择特征以及种间差异和季节变动,不同生境斑块的食物质量、底质类型和水动力条件是影响海参生境偏好的重要因素;海参通过生物扰动可以改变珊瑚礁生境沉积物的含水量、渗透性、颗粒组成、再矿化率、无机营养物质释放速率以及孔隙水的化学梯度,并增加沉积物中的溶氧浓度、促进溶解...  相似文献   

13.
Coral reef islands are among the most vulnerable environments on Earth to climate change because they are low lying and largely constructed from unconsolidated sediments that can be readily reworked by waves and currents. These sediments derive entirely from surrounding coral reef and reef flat environments and are thus highly sensitive to ecological transitions that may modify reef community composition and productivity. How such modifications – driven by anthropogenic disturbances and on‐going and projected climatic and environmental change – will impact reef island sediment supply and geomorphic stability remains a critical but poorly resolved question. Here, we review the unique ecological–geomorphological linkages that underpin this question and, using different scenarios of environmental change for which reef sediment production responses can be projected, explore the likely resilience of different island types. In general, sand‐dominated islands are likely to be less resilient than those dominated by rubble grade material. However, because different islands typically have different dominant sediment constituents (usually either coral, benthic foraminifera or Halimeda) and because these respond differently to individual ecological disturbances, island resilience is likely to be highly variable. Islands composed of coral sands are likely to undergo major morphological change under most near‐future ecological change scenarios, while those dominated by Halimeda may be more resilient. Islands composed predominantly of benthic foraminifera (a common state through the Pacific region) are likely to exhibit varying degrees of resilience depending upon the precise combination of ecological disturbances faced. The study demonstrates the critical need for further research bridging the ecological–geomorphological divide to understand: (1) sediment production responses to different ecological and environmental change scenarios; and (2) dependant landform vulnerability.  相似文献   

14.
Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.  相似文献   

15.
Effects of ultraviolet radiation on corals and other coral reef organisms   总被引:6,自引:0,他引:6  
The discovery of the importance of solar ultraviolet radiation (UVR) as a factor affecting the biology of coral reefs dates only to about 1980. Interest has heightened during the past five years owing to the demonstration of loss of stratospheric ozone through human activities. We have only begun to document gross, qualitative effects of UVR on coral reef organisms, usually in experiments comparing the biological response to the presence or absence of UVR through the use of UV-cutoff filters, or to varying levels of UVR in transplantation studies. Most such studies have not distinguished between the effects of UVA (320–400 nm) and those of UVB (290–320 nm), although in the context of global change involving stratospheric ozone loss, it is the latter wavelengths that are relevant. To date we have been addressing physiological and ecological questions, not yet attempting to evaluate quantitatively the impact of forecast increases in solar UVB penetration. Interacting and synergistic effects of UVR with increased temperature, pollutants, sedimentation, visible light, etc. have scarcely been studied but will be essential to understanding and predicting the fate of coral reefs under conditions of global change. Here we comprehensively review the effects of UVR on corals and other reef macroorganisms, mindful that although much is known of proximal effects, little of this knowledge is directly useful in making long-term predictions regarding the health of coral reefs. We conclude that even small anthropogenic increases in UVB levels will have sublethal physiological manifestations in corals and other reef organisms, but that this will have relatively small impact on the distribution of reef corals and coral reefs, perhaps affecting their minimum depths of occurrence.  相似文献   

16.
Hydra is emerging as a model organism for studies of ageing in early metazoan animals, but reef corals offer an equally ancient evolutionary perspective as well as several advantages, not least being the hard exoskeleton which provides a rich fossil record as well as a record of growth and means of ageing of individual coral polyps. Reef corals are also widely regarded as potentially immortal at the level of the asexual lineage and are assumed not to undergo an intrinsic ageing process. However, putative molecular indicators of ageing have recently been detected in reef corals. While many of the large massive coral species attain considerable ages (>600 years) there are other much shorter‐lived species where older members of some populations show catastrophic mortality, compared to juveniles, under environmental stress. Other studies suggestive of ageing include those demonstrating decreased reproduction, increased susceptibility to oxidative stress and disease, reduced regeneration potential and declining growth rate in mature colonies. This review aims to promote interest and research in reef coral ageing, both as a useful model for the early evolution of ageing and as a factor in studies of ecological impacts on reef systems in light of the enhanced effects of environmental stress on ageing in other organisms.  相似文献   

17.
The current rapid rate of human-driven environmental change presents wild populations with novel conditions and stresses. Theory and experimental evidence for evolutionary rescue present a promising case for species facing environmental change persisting via adaptation. Here, we assess the potential for evolutionary rescue in wild vertebrates. Available information on evolutionary rescue was rare and restricted to abundant and highly fecund species that faced severe intentional anthropogenic selective pressures. However, examples from adaptive tracking in common species and genetic rescues in species of conservation concern provide convincing evidence in favour of the mechanisms of evolutionary rescue. We conclude that low population size, long generation times and limited genetic variability will result in evolutionary rescue occurring rarely for endangered species without intervention. Owing to the risks presented by current environmental change and the possibility of evolutionary rescue in nature, we suggest means to study evolutionary rescue by mapping genotype → phenotype → demography → fitness relationships, and priorities for applying evolutionary rescue to wild populations.  相似文献   

18.
Beneficial mutations can promote persistence via evolutionary rescue in species experiencing environmental change. However, in long-lived organisms, the pace of evolution is often too slow relative to that of environmental change for evolutionary rescue to occur. Using a spatially implicit metacommunity model, we demonstrate how interactions between slow-growing hosts and their fast-growing microbiomes can promote persistence under rapid environmental change. We show that microbial mutualists can rescue their hosts by allowing them to persist under deteriorating environmental conditions. This form of mutualist-mediated ecological rescue can be jeopardized by competitively dominant microbial cheaters, which can destabilize host population dynamics and promote the risk of stochastic extinction. However, when microbial diversity is high, (meta)community-level interactions among multiple microbial species can buffer the disruptive effect of cheaters and give rise to a more potent form of ecological rescue mediated by the entire microbiome that promotes the abundance, stability, and persistence of the host in the face of environmental change. Our results address two critical problems associated with the viability of rescue in macroorganisms: the temporal mismatch between rapid environmental change and slow organismal response and the potential disruption of rescue by microbial cheaters.  相似文献   

19.
Coral reef restoration initiatives are burgeoning in response to the need for novel management strategies to address dramatic global declines in coral cover. However, coral restoration programs typically lack rigor and critical evaluation of their effectiveness. A review of 83 peer‐reviewed papers that used coral transplantation for reef restoration reveals that growth and survival of coral fragments were the most widely used indicators of restoration success, with 88% of studies using these two indicators either solely (55%) or in combination with a limited number of other ecological factors (33%). In 53% of studies, reef condition was monitored for 1 year or less, while only 5% of reefs were monitored for more than 5 years post‐transplantation. These results highlight that coral reef restoration science has focused primarily on short‐term experiments to evaluate the feasibility of techniques for ecological restoration and the initial establishment phase post‐transplantation, rather than on longer‐term outcomes for coral reef communities. Here, we outline 10 socioecological indicators that comprehensively evaluate the effectiveness of coral reef restoration across the four pillars of sustainability (i.e. environmental, sociocultural, governance, and economic contributions to sustainable communities). We recommend that evaluations of the effectiveness of coral restoration programs integrate ecological indicators with sociocultural, economic, and governance considerations. Assessing the efficacy of coral restoration as a tool to support reef resilience will help to guide future efforts and ensure the sustainable maintenance of reef ecosystem goods and services.  相似文献   

20.
《农业工程》2014,34(1):19-25
Coral reef communities face unprecedented pressures at local, regional and global scales as a consequence of climate change and anthropogenic disturbance. Remote sensing, from satellites or aircraft, is possibly the only means to measure the effects of such stresses at appropriately large spatial scales. In the past 30 years, remote sensing of coral reefs has made rapid progress. However, the current technology is still not mature enough to monitor complicated coral reef ecosystems. Compared with foreign research in this field, our work lags far behind. There are still deficiencies in many aspects, such as basic data collection, theoretical research and platform construction. In our nation, it is even unclear how coral reefs disperse and where they may be unhealthy. In this paper, general characteristics of coral reef ecosystems and spectral features of different reef benthos have been summarized, based initially on a review of relevant literature in recent years. Based on the spectral separability of different reef types or benthos, remote sensing can be used to monitor two aspects of coral reefs: (1) Measurement of the ecological properties of reefs. (2) Health assessment of the coral reef ecosystem. In the first part, optical remote sensing methods are widely used to map reef geomorphology and habitats or biotopes. The investigation of geomorphologic zonation has proven to be one of the most successful applications, as different geomorphologic zones are associated with characteristic benthic community structures and occur at spatial scales of tens to hundreds of meters, they are amenable to remote detection by moderate to high resolution sensors. With more and more attention on the ecological problems of coral reefs, a number of studies have used high resolution sensors to map reef communities. The number of classes distinguishable depends on many factors, including the platforms, resolution (spectral, spatial and temporal resolution) and environmental conditions (water depth, water clarity, surface roughness, etc.). Compared with deep water color remote sensing, or terrestrial remote sensing, three techniques for the measurement of reef ecological properties are examined in this paper: (1) Coral reef classification system using remote sensing. (2) Techniques of sea surface correction and water column correction. (3) Techniques of coral reef information extraction from images. In terms of the complexity of coral reef ecosystems, the current techniques still need further improvement or optimization. In the health assessment of coral reef ecosystems, there are two ways to carry out the monitoring using remote sensing: (1) Monitoring the pigment or symbiotic zooxanthellae contents in corals. (2) Measuring the environmental properties of reefs. The first way is theoretically feasible, but difficult to achieve in practice. Currently, most reef health assessments are carried out by measuring environmental parameters, including sea surface temperature, solar radiation, ultraviolet radiation, water color, wind speed and direction, rainfall, ocean acidification, sea level, etc., of which sea surface temperature has been routinely measured by NOAA to monitor coral bleaching. In addition to the contents above, this article puts forward five main prospects for development in the future: (1) Establishment of a coral reef classification system using remote sensing. (2) Satellite launch for monitoring coral reefs. (3) Theoretical and methodological development. (4) Establishment of a spectral database for different reef benthos. (5) Integrated application of multi-source remote sensing data. It is hoped that the information provided here will be a reference for subsequent similar studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号