首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   

2.
Throughout the Holocene, northern peatlands have both accumulated carbon and emitted methane. Their impact on climate radiative forcing has been the net of cooling (persistent CO2 uptake) and warming (persistent CH4 emission). We evaluated this by developing very simple Holocene peatland carbon flux trajectories, and using these as inputs to a simple atmospheric perturbation model. Flux trajectories are based on estimates of contemporary CH4 flux (15–50 Tg CH4 yr−1), total accumulated peat C (250–450 Pg C), and peatland initiation dates. The contemporary perturbations to the atmosphere due to northern peatlands are an increase of ∼100 ppbv CH4 and a decrease of ∼35 ppmv CO2. The net radiative forcing impact northern peatlands is currently about −0.2 to −0.5 W m−2 (a cooling). It is likely that peatlands initially caused a net warming of up to +0.1 W m−2, but have been causing an increasing net cooling for the past 8000–11 000 years. A series of sensitivity simulations indicate that the current radiative forcing impact is determined primarily by the magnitude of the contemporary methane flux and the magnitude of the total C accumulated as peat, and that radiative forcing dynamics during the Holocene depended on flux trajectory, but the overall pattern was similar in all cases.  相似文献   

3.
Difficulty in balancing the global carbon budget has lead to increased attention on tropical forests, which have been estimated to account for up to one third of global gross primary production. Whether tropical forests are sources, sinks, or neutral with respect to their carbon balance with the atmosphere remains unclear. To address this issue, estimates of net ecosystem exchange of carbon (NEE) were made for 3 years (1998–2000) using the eddy‐covariance technique in a tropical wet forest in Costa Rica. Measurements were made from a 42 m tower centred in an old‐growth forest. Under unstable conditions, the measurement height was at least twice the estimated zeroplane height from the ground. The canopy at the site is extremely rough; under unstable conditions the median aerodynamic roughness length ranged from 2.4 to 3.6 m. No relationship between NEE and friction velocity (u*) was found using all of the 30‐min averages. However, there was a linear relationship between the nighttime NEE and averaged u* (R2 = 0.98). The diurnal pattern of flux was similar to that found in other tropical forests, with mean daytime NEE ca. ? 18 μ mol CO2 m?2 s?1 and mean nighttime NEE 4.6 μ mol CO2 m?2 s?1. However, because ~ 80% of the nighttime data in this forest were collected during low u* conditions ( < 0.2 m s?1), nighttime NEE was likely underestimated. Using an alternative analysis, mean nighttime NEE increased to 7.05 μ mol CO2 m?2 s?1. There were interannual differences in NEE, but seasonal differences were not apparent. Irradiance accounted for ~ 51% of the variation in the daytime fluxes, with temperature and vapour pressure deficit together accounting for another ~ 20%. Light compensation points ranged from 100 to 207 μ mol PPFD m?2 s?1. No was relationship was found between 30‐min nighttime NEE and tower‐top air temperature. A weak relationship was found between hourly nighttime NEE and canopy air temperature using data averaged hourly over the entire sampling period (Q10 = 1.79, R2 = 0.17). The contribution of below‐sensor storage was fairly constant from day to day. Our data indicate that this forest was a slight carbon source in 1998 (0.05 to ?1.33 t C ha?1 yr?1), a moderate sink in 1999 (?1.53 to ?3.14 t C ha?1 yr?1), and a strong sink in 2000 (?5.97 to ?7.92 t C ha?1 yr?1). This trend is interpreted as relating to the dissipation of warm‐phase El Niño effects over the course of this study.  相似文献   

4.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   

5.
The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co‐acting factors that modulate GPP and RECO flux dynamics. To overcome this limitation, we developed a hybrid data‐driven approach based on combined neural networks (NNC‐part). NNC‐part incorporates process knowledge by introducing a photosynthetic response based on the light‐use efficiency (LUE) concept, and uses a comprehensive dataset of soil and micrometeorological variables as fluxes drivers. We applied the method to 36 sites from the FLUXNET2015 dataset and found a high consistency in the results with those derived from other standard partitioning methods for both GPP (R2 > .94) and RECO (R2 > .8). High consistency was also found for (a) the diurnal and seasonal patterns of fluxes and (b) the ecosystem functional responses. NNC‐part performed more realistic than the traditional methods for predicting additional patterns of gross CO2 fluxes, such as: (a) the GPP response to VPD, (b) direct effects of air temperature on GPP dynamics, (c) hysteresis in the diel cycle of gross CO2 fluxes, (d) the sensitivity of LUE to the diffuse to direct radiation ratio, and (e) the post rain respiration pulse after a long dry period. In conclusion, NNC‐part is a valid data‐driven approach to provide GPP and RECO estimates and complementary to the existing partitioning methods.  相似文献   

6.
  • 1 Eddy covariance measurements of CO2 flux, based on four and six week campaigns in Rondôdnia, Brazil, have been used in conjunction with a model to scale up data to a whole year, and thus estimate the carbon balance of the tropical forest ecosystem, and the changes in carbon balance expected from small interannual variations in climatological conditions.
  • 2 One possible source of error in this estimation arises from the difficulty in measuring fluxes under stably stratified meteorological conditions, such as occur frequently at night. Flux may be ‘lost’ because of low velocity advection, caused by nocturnal radiative cooling at sites on raised ground. Such effects may be detected by plotting the net ecosystem flux of CO2, Feco is a function of wind speed. If flux is ‘lost’ then Feco is expected to decline with wind speed. In the present data set, this did not occur, and Feco was similar to the nocturnal flux estimated independently from chamber measurements.
  • 3 The model suggests that in 1992/3, the Gross Primary Productivity (GPP) was 203.3 mol C m?2 y?1 and ecosystem respiration was 194.8 mol C m?2 y?1, giving an ecosystem carbon balance of 8.5 mol C m?2 y?1, equivalent to a sink of 1.0 ton C ha?1 y?1. However, the sign and magnitude of this figure is very sensitive to temperature, because of the strong influence of temperature on respiration.
  • 4 The model also suggests that the effect of temperature on the net carbon balance is strongly dependent on the partial pressure of CO2.
  相似文献   

7.
Radon‐222 (Rn‐222) is used as a transport tracer of forest canopy–atmosphere CO2 exchange in an old‐growth, tropical rain forest site near km 67 of the Tapajós National Forest, Pará, Brazil. Initial results, from month‐long periods at the end of the wet season (June–July) and the end of the dry season (November–December) in 2001, demonstrate the potential of new Rn measurement instruments and methods to quantify mass transport processes between forest canopies and the atmosphere. Gas exchange rates yield mean canopy air residence times ranging from minutes during turbulent daytime hours to greater than 12 h during calm nights. Rn is an effective tracer for net ecosystem exchange of CO2 (CO2 NEE) during calm, night‐time hours when eddy covariance‐based NEE measurements are less certain because of low atmospheric turbulence. Rn‐derived night‐time CO2 NEE (9.00±0.99 μmol m?2 s?1 in the wet season, 6.39±0.59 in the dry season) was significantly higher than raw uncorrected, eddy covariance‐derived CO2 NEE (5.96±0.51 wet season, 5.57±0.53 dry season), but agrees with corrected eddy covariance results (8.65±1.07 wet season, 6.56±0.73 dry season) derived by filtering out lower NEE values obtained during calm periods using independent meteorological criteria. The Rn CO2 results suggest that uncorrected eddy covariance values underestimate night‐time CO2 loss at this site. If generalizable to other sites, these observations indicate that previous reports of strong net CO2 uptake in Amazonian terra firme forest may be overestimated.  相似文献   

8.
Increases in solar ultraviolet‐B radiation (UV‐B; 280–320 nm) reaching the earth have been estimated to continue until 2050s in the boreal and subarctic regions with an abundant peatland cover. Peatlands are significant sinks for carbon dioxide (CO2) and sources for methane (CH4). To assess whether the future increases in UV‐B could affect the fluxes of CO2 and CH4 in peatlands via an impact on vegetation, we exposed peatland microcosms to modulated 30% supplementation of erythemally weighted UV‐B at an outdoor facility for one growing season. The experimental design included appropriate controls for UV‐A and ambient radiation. The UV‐B caused a significant reduction in gross photosynthesis, net ecosystem CO2 exchange, and CH4 emission of the peatland microcosms. These changes in the carbon gas cycling can be partly explained by UV‐B‐induced morphological changes in Eriophorum vaginatum which acts as a conduit for CH4. Leaf cross section and the percentage of CH4‐conducting aerenchymatous tissue in E. vaginatum were significantly reduced by UV‐B. Methanol‐extractable UV‐B absorbing compounds decreased under both UV‐B and UV‐A in Sphagnum angustifolium, and tended to accumulate under UV‐B in S. papillosum. Membrane permeability to magnesium (Mg) and calcium (Ca) ions was higher in UV‐B exposed S. angustifolium. Amount of chlorophyll and carotenoid pigments was increased by UV‐A in S. magellanicum. The observed changes in Sphagnum mosses did not coincide with those in carbon gas fluxes but occurred at the time of the highest UV intensity in the mid summer. Our findings indicate that increasing UV‐B may have more substantial effects on gas exchange in peatlands than previously thought.  相似文献   

9.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climates. Here we report results of a large‐scale (1 ha) throughfall exclusion experiment conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions by >40% and increased rates of consumption of atmospheric CH4 by a factor of >4. No treatment effect has yet been detected for NO and CO2 fluxes. The responses of these microbial processes after three rainy seasons of the exclusion treatment are characteristic of a direct effect of soil aeration on denitrification, methanogenesis, and methanotrophy. An anticipated second phase response, in which drought‐induced plant mortality is followed by increased mineralization of C and N substrates from dead fine roots and by increased foraging of termites on dead coarse roots, has not yet been detected. Analyses of depth profiles of N2O and CO2 concentrations with a diffusivity model revealed that the top 25 cm soil is the site of most of the wet season production of N2O, whereas significant CO2 production occurs down to 100 cm in both seasons, and small production of CO2 occurs to at least 1100 cm depth. The diffusivity‐based estimates of CO2 production as a function of depth were strongly correlated with fine root biomass, indicating that trends in belowground C allocation may be inferred from monitoring and modeling profiles of H2O and CO2.  相似文献   

10.
The Global Carbon Project (GCP) has published global carbon budgets annually since 2007 (Canadell et al. [2007], Proc Natl Acad Sci USA, 104, 18866–18870; Raupach et al. [2007], Proc Natl Acad Sci USA, 104, 10288–10293). There are many scientists involved, but the terrestrial fluxes that appear in the budgets are not well understood by ecologists and biogeochemists outside of that community. The purpose of this paper is to make the terrestrial fluxes of carbon in those budgets more accessible to a broader community. The GCP budget is composed of annual perturbations from pre‐industrial conditions, driven by addition of carbon to the system from combustion of fossil fuels and by transfers of carbon from land to the atmosphere as a result of land use. The budget includes a term for each of the major fluxes of carbon (fossil fuels, oceans, land) as well as the rate of carbon accumulation in the atmosphere. Land is represented by two terms: one resulting from direct anthropogenic effects (Land Use, Land‐Use Change, and Forestry or land management) and one resulting from indirect anthropogenic (e.g., CO2, climate change) and natural effects. Each of these two net terrestrial fluxes of carbon, in turn, is composed of opposing gross emissions and removals (e.g., deforestation and forest regrowth). Although the GCP budgets have focused on the two net terrestrial fluxes, they have paid little attention to the gross components, which are important for a number of reasons, including understanding the potential for land management to remove CO2 from the atmosphere and understanding the processes responsible for the sink for carbon on land. In contrast to the net fluxes of carbon, which are constrained by the global carbon budget, the gross fluxes are largely unconstrained, suggesting that there is more uncertainty than commonly believed about how terrestrial carbon emissions will respond to future fossil fuel emissions and a changing climate.  相似文献   

11.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climate. Here, we report the final results of a 5‐year, large‐scale (1 ha) throughfall exclusion experiment, followed by 1 year of recovery with natural throughfall, conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions in four out of five treatment years (a natural drought year being the exception), and then recovered during the first year after the drought treatment stopped. Similarly, consumption of atmospheric CH4 increased under drought treatment, except during a natural drought year, and it also recovered to pretreatment values during the first year that natural throughfall was permitted back on the plot. No treatment effect was detected for NO emissions during the first 3 treatment years, but NO emissions increased in the fourth year under the extremely dry conditions of the exclusion plot during a natural drought. Surprisingly, there was no treatment effect on soil CO2 efflux in any year. The drought treatment provoked significant tree mortality and reduced the allocation of C to stems, but allocation of C to foliage and roots were less affected. Taken together, these results suggest that the dominant effect of throughfall exclusion on soil processes during this 6‐year period was on soil aeration conditions that transiently affected CH4, N2O, and NO production and consumption.  相似文献   

12.
The lowland peatlands of south‐east Asia represent an immense reservoir of fossil carbon and are reportedly responsible for 30% of the global carbon dioxide (CO2) emissions from Land Use, Land Use Change and Forestry. This paper provides a review and meta‐analysis of available literature on greenhouse gas fluxes from tropical peat soils in south‐east Asia. As in other parts of the world, water level is the main control on greenhouse gas fluxes from south‐east Asian peat soils. Based on subsidence data we calculate emissions of at least 900 g CO2 m?2 a?1 (~250 g C m?2 a?1) for each 10 cm of additional drainage depth. This is a conservative estimate as the role of oxidation in subsidence and the increased bulk density of the uppermost drained peat layers are yet insufficiently quantified. The majority of published CO2 flux measurements from south‐east Asian peat soils concerns undifferentiated respiration at floor level, providing inadequate insight on the peat carbon balance. In contrast to previous assumptions, regular peat oxidation after drainage might contribute more to the regional long‐term annual CO2 emissions than peat fires. Methane fluxes are negligible at low water levels and amount to up to 3 mg CH4 m?2 h?1 at high water levels, which is low compared with emissions from boreal and temperate peatlands. The latter emissions may be exceeded by fluxes from rice paddies on tropical peat soil, however. N2O fluxes are erratic with extremely high values upon application of fertilizer to wet peat soils. Current data on CO2 and CH4 fluxes indicate that peatland rewetting in south‐east Asia will lead to substantial reductions of net greenhouse gas emissions. There is, however, an urgent need for further quantitative research on carbon exchange to support the development of consistent policies for climate change mitigation.  相似文献   

13.
  • 1 Carbon dioxide and water vapour fluxes were measured for 55 days by eddy covariance over an undisturbed tropical rain forest in Rondonia, Brazil. Profiles of CO2 inside the canopy were also measured.
  • 2 During the night, CO2 concentration frequently built up to 500 ppm throughout the canopy as a result of low rates of exchange with the atmosphere. In the early morning hours, ventilation of the canopy occurred.
  • 3 Ecosystem gas exchange was calculated from a knowledge of fluxes above the canopy and changes of CO2 stored inside the canopy. Typically, uptake by the canopy was 15 μmol m?2 s?1 in bright sunlight and dark respiration was 6-7 μmol m?2 s?1 The quantum requirement at low irradiance was: 40 mol photons per mol of CO2.
  • 4 Bulk stomatal conductance of the ecosystem was maximal in the early morning (0.4-1.0 mol m?2 s?1) and declined over the course of the day as leaf-to-air vapour pressure difference increased.
  相似文献   

14.
Continuous and direct measurements of ecosystem carbon dioxide and water vapour fluxes can improve our ability to close regional and global carbon and hydrological budgets. On this behalf, an international and multidisciplinary group of scientists (micrometeorologists, ecophysiologists and biogeochemists) assembled at La Thuile, Italy to convene a workshop on ‘Strategies for Monitoring and Modelling CO2 and Water Vapour Fluxes over Terrestrial Ecosystems’. Over the course of the week talks and discussions focused on: (i) the results from recent field studies on the annual cycle of carbon dioxide and water vapour fluxes over terrestrial ecosystems; (ii) the problems and pitfalls associated with making long-term flux measurements; (iii) alternative methods for assessing ecosystem carbon dioxide and water vapour fluxes; (iv) how direct and continuous carbon dioxide and water vapour flux measurements could be used by the ecological and biogeochemical modelling communities; and (v) if, how and where to proceed with establishing a network of long-term flux measurement sites. This report discusses the purpose of the meeting and summarizes the conclusions drawn from the discussions by the attending scientists. There was a consensus that recent advances in instrumentation and software make possible long-term measurements of carbon dioxide and water vapour fluxes over terrestrial ecosystems. At this writing, eight research teams have conducted long-term carbon dioxide and water vapour flux experiments and more long-term studies are anticipated. The participants advocated an experimental design that would make long-term flux measurement valuable to a wider community of modelers, biogeochemists and ecologists. A network of carbon dioxide and water vapour flux measurement stations should include ancillary measurements of meteorological, ecological and biological variables. To assess spatial representativeness of the long term and tower-based flux measurements, periodic aircraft-based flux experiments and satellite-based assessments of land cover were recommended. Occasional cuvette-based measurements of leaf-level carbon dioxide and water vapour fluxes were endorsed to provide information on the biological control of surface fluxes. They can also provide data to parameterize ecophysiological models. Flask sampling of stable carbon isotopes was advocated to extend the flux measurements to the global scale.  相似文献   

15.
Seasonal net carbon dioxide exchange of a beech forest with the atmosphere   总被引:10,自引:0,他引:10  
The seasonal carbon dioxide exchange of a beech forest of Central Italy was studied by means of the eddy covariance technique. Additional measurements of biomass respiration with cuvettes and relationship of carbon dioxide exchanges with temperature and light were used to interpolate missing data during the dormant and part of the growing season. The net ecosystem production of the forest equals 472 g C m?2 y?1 while the gross ecosystem production 1016 g C m?2 y?1 and respiration 544 g C m?2 y?1. These estimates are compared with the net primary production determined by direct biomass sampling which amounts to 802 g C m?2 y?1.  相似文献   

16.
The estimation of the carbon balance in ecosystems, regions, and the biosphere is currently one of the main concerns in the study of the ecology of global change. Current remote sensing methodologies for estimating gross primary productivity are not satisfactory because they rely too heavily on (i) the availability of climatic data, (ii) the definition of land‐use cover, and (iii) the assumptions of the effects of these two factors on the radiation‐use efficiency of vegetation (RUE). A new methodology is urgently needed that will actually assess RUE and overcome the problems associated with the capture of fluctuations in carbon absorption in space and over time. Remote sensing techniques such as the widely used reflectance vegetation indices (e.g. NDVI, EVI) allow green plant biomass and therefore plant photosynthetic capacity to be assessed. However, there are vegetation types, such as the Mediterranean forests, with a very low seasonality of these vegetation indices and a high seasonality of carbon uptake. In these cases it is important to detect how much of this capacity is actually realized, which is a much more challenging goal. The photochemical reflectance index (PRI) derived from freely available satellite information (MODIS sensor) presented for a 5‐year analysis for a Mediterranean forest a positive relationship with the RUE. Thus, we show that it is possible to estimate RUE and GPP in real time and therefore actual carbon uptake of Mediterranean forests at ecosystem level using the PRI. This conceptual and technological advancement would avoid the need to rely on the sometimes unreliable maximum RUE.  相似文献   

17.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

18.
19.
Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non‐normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis–Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. High‐frequency chamber‐based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log‐normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2, which then determines the PDF of microsites that produce or consume CH4 and N2O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2O flux. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co‐occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.  相似文献   

20.
In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw‐induced collapse‐scar bog (‘wetland’) expansion. However, their combined effect on landscape‐scale net ecosystem CO2 exchange (NEELAND), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature‐ and light‐limited NEELAND of a boreal forest–wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (?20 g C m?2) and wetland NEE (?24 g C m?2) were similar, suggesting negligible wetland expansion effects on NEELAND. In contrast, we find non‐negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light‐limited in fall. In a warmer climate, ER increases year‐round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m?2 for a moderate and 103 ± 38 g C m?2 for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest–wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by direct climate change rather than by indirect land cover change impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号