首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In metazoans, nuclear export of bulk mRNA is mediated by Tap‐p15, a conserved heterodimeric export receptor that cooperates with adaptor RNA‐binding proteins. In this article, we show that Thoc5, a subunit of the mammalian TREX complex, binds to a distinct surface on the middle (Ntf2‐like) domain of Tap. Notably, adaptor protein Aly and Thoc5 can simultaneously bind to non‐overlapping binding sites on Tap‐p15. In vivo, Thoc5 was not required for bulk mRNA export. However, nuclear export of HSP70 mRNA depends on both Thoc5 and Aly. Consistent with a function as a specific export adaptor, Thoc5 exhibits in vitro RNA‐binding activity and is associated with HSP70 mRNPs in vivo as a component of the stable THO complex. Thus, through the combinatorial use of an adaptor (e.g., Aly) and co‐adapter (e.g., Thoc5), Tap‐p15 could function as an export receptor for different classes of mRNAs.  相似文献   

2.
Structural basis for the nuclear export activity of Importin13   总被引:1,自引:0,他引:1  
Importin13 (Imp13) is a bidirectional karyopherin that can mediate both import and export of cargoes. Imp13 recognizes several import cargoes, which include the exon junction complex components Mago‐Y14 and the E2 SUMO‐conjugating enzyme Ubc9, and one known export cargo, the translation initiation factor 1A (eIF1A). To understand how Imp13 can perform double duty, we determined the 3.6‐Å crystal structure of Imp13 in complex with RanGTP and with eIF1A. eIF1A binds at the inner surface of the Imp13 C‐terminal arch adjacent and concomitantly to RanGTP illustrating how eIF1A can be exported by Imp13. Moreover, the 3.0‐Å structure of Imp13 in its unbound state reveals the existence of an open conformation in the cytoplasm that explains export cargo release and completes the export branch of the Imp13 pathway. Finally, we demonstrate that Imp13 is able to bind and export eIF1A in vivo and that its function is essential.  相似文献   

3.
4.
RNA undergoing nuclear export first encounters the basket of the nuclear pore. Two basket proteins, Nup98 and Nup153, are essential for mRNA export, but their molecular partners within the pore are largely unknown. Because the mechanism of RNA export will be in question as long as significant vertebrate pore proteins remain undiscovered, we set out to find their partners. Fragments of Nup98 and Nup153 were used for pulldown experiments from Xenopus egg extracts, which contain abundant disassembled nuclear pores. Strikingly, Nup98 and Nup153 each bound the same four large proteins. Purification and sequence analysis revealed that two are the known vertebrate nucleoporins, Nup96 and Nup107, whereas two mapped to ORFs of unknown function. The genes encoding the novel proteins were cloned, and antibodies were produced. Immunofluorescence reveals them to be new nucleoporins, designated Nup160 and Nup133, which are accessible on the basket side of the pore. Nucleoporins Nup160, Nup133, Nup107, and Nup96 exist as a complex in Xenopus egg extracts and in assembled pores, now termed the Nup160 complex. Sec13 is prominent in Nup98 and Nup153 pulldowns, and we find it to be a member of the Nup160 complex. We have mapped the sites that are required for binding the Nup160 subcomplex, and have found that in Nup98, the binding site is used to tether Nup98 to the nucleus; in Nup153, the binding site targets Nup153 to the nuclear pore. With transfection and in vivo transport assays, we find that specific Nup160 and Nup133 fragments block poly[A]+ RNA export, but not protein import or export. These results demonstrate that two novel vertebrate nucleoporins, Nup160 and Nup133, not only interact with Nup98 and Nup153, but themselves play a role in mRNA export.  相似文献   

5.
Arabidopsis Nup160 and Seh1, encoding two predicted nucleoporins of the Nup107–160 nuclear pore sub-complex, were identified in a reverse genetics screen based on their requirement for basal disease resistance. Both genes also contribute to immunity conferred by Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeat (TNL)-type R proteins and constitutive resistance activated in the deregulated TNL mutant, snc1. Protein amounts of EDS1, a central regulator of TNL-triggered resistance, are reduced in seh1 and severely depleted in nup160 single mutants. Here, we investigate the impact of mutations in Nup160, Seh1 and a third complex member, MOS3/Nup96, on EDS1 protein accumulation in the snc1 auto-immune mutant background. In addition, we examine the subcellular localization of Seh1 in root tissues.  相似文献   

6.
    
The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N‐terminal “FG” repeats containing a Gle2p‐binding sequence motif and a NPC targeting domain at its C‐terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882–1034 [CgNup116(882–1034)], at 1.94 Å resolution. The X‐ray structure of CgNup116(882–1034) is consistent with the molecular envelope determined in solution by small‐angle X‐ray scattering. Structural similarities of CgNup116(882–1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
The nuclear export of large ribonucleoparticles is complex and requires specific transport factors. Messenger RNAs are exported through the RNA-binding protein Npl3 and the interacting export receptor Mex67. Export of large ribosomal subunits also requires Mex67; however, in this case, Mex67 binds directly to the 5S ribosomal RNA (rRNA) and does not require the Npl3 adaptor. Here, we have discovered a new function of Npl3 in mediating the export of pre-60S ribosomal subunit independently of Mex67. Npl3 interacts with the 25S rRNA, ribosomal and ribosome-associated proteins, as well as with the nuclear pore complex. Mutations in NPL3 lead to export defects of the large subunit and genetic interactions with other pre-60S export factors.  相似文献   

9.
    
The transport receptor Mex67-Mtr2 functions in mRNA export, and also by a loop-confined surface on the heterodimer binds to and exports pre-60S particles. We show that Mex67-Mtr2 through the same surface that recruits pre-60S particles interacts with the Nup84 complex, a structural module of the nuclear pore complex devoid of Phe-Gly domains. In vitro, pre-60S particles and the Nup84 complex compete for an overlapping binding site on the loop-extended Mex67-Mtr2 surface. Chemical crosslinking identified Nup85 as the subunit in the Nup84 complex that directly binds to the Mex67 loop. Genetic studies revealed that this interaction is crucial for mRNA export. Notably, pre-60S subunit export impaired by mutating Mtr2 or the 60S adaptor Nmd3 could be partially restored by second-site mutation in Nup85 that caused dissociation of Mex67-Mtr2 from the Nup84 complex. Thus, the Mex67-Mtr2 export receptor employs a versatile binding platform on its surface that could create a crosstalk between mRNA and ribosome export pathways.  相似文献   

10.
11.
12.
13.
    
MEAN (6‐methoxyethylamino‐numonafide) is a small molecule compound, and here, we report that it effectively inhibits hepatitis C virus (HCV) infection in an HCV cell culture system using a JC1‐Luc chimeric virus, with a 50% effective concentration (EC50) of 2.36 ± 0.29 μM. Drug combination usage analyses demonstrated that MEAN was synergistic with interferon α, ITX5061 and ribavirin. In addition, MEAN effectively inhibits N415D mutant virus and G451R mutant viral infections. Mechanistic studies show that the treatment of HCV‐infected hepatocytes with MEAN inhibits HCV replication but not translation. Furthermore, treatment with MEAN significantly reduces polypyrimidine tract‐binding protein (PTB) levels and blocks the cytoplasmic redistribution of PTB upon infection. In the host cytoplasm, PTB is directly associated with HCV replication, and the inhibition of HCV replication by MEAN can result in the sequestration of PTB in treated nuclei. Taken together, these results indicate that MEAN is a potential therapeutic candidate for HCV infection, and the targeting of the nucleo‐cytoplasmic translocation of the host PTB protein could be a novel strategy to interrupt HCV replication.  相似文献   

14.
15.
    
The mRNA lifecycle is driven through spatiotemporal changes in the protein composition of mRNA particles (mRNPs) that are triggered by RNA‐dependent DEAD‐box protein (Dbp) ATPases. As mRNPs exit the nuclear pore complex (NPC) in Saccharomyces cerevisiae, this remodeling occurs through activation of Dbp5 by inositol hexakisphosphate (IP6)‐bound Gle1. At the NPC, Gle1 also binds Nup42, but Nup42's molecular function is unclear. Here we employ the power of structure‐function analysis in S. cerevisiae and human (h) cells, and find that the high‐affinity Nup42‐Gle1 interaction is integral to Dbp5 (hDDX19B) activation and efficient mRNA export. The Nup42 carboxy‐terminal domain (CTD) binds Gle1/hGle1B at an interface distinct from the Gle1‐Dbp5/hDDX19B interaction site. A nup42‐CTD/gle1‐CTD/Dbp5 trimeric complex forms in the presence of IP6. Deletion of NUP42 abrogates Gle1‐Dbp5 interaction, and disruption of the Nup42 or IP6 binding interfaces on Gle1/hGle1B leads to defective mRNA export in S. cerevisiae and human cells. In vitro, Nup42‐CTD and IP6 stimulate Gle1/hGle1B activation of Dbp5 and DDX19B recombinant proteins in similar, nonadditive manners, demonstrating complete functional conservation between humans and S. cerevisiae. Together, a highly conserved mechanism governs spatial coordination of mRNP remodeling during export. This has implications for understanding human disease mutations that perturb the Nup42‐hGle1B interaction.   相似文献   

16.
The DEAD-box RNA helicase Dbp5 is an essential and conserved mRNA export factor which functions in the ATP dependent remodeling of RNA/protein complexes. As such it displaces mRNA bound proteins at the cytoplasmic site of the nuclear pore complex. For the regulation of its RNA-dependent ATPase activity during late steps of nuclear transport, Dbp5 requires the nucleoporin Nup159 and its cofactors Gle1 and IP6. In addition to its role in mRNA export, a second important function of Dbp5 was identified in translation termination, where it acts together with eRF1 once the translation machinery has reached the stop codon. Similar to mRNA export, this function also requires Gle1–IP6, however, the counterpart of Nup159 is still missing. Potential other functions of the nucleo-cytoplasmic protein Dbp5 are discussed as well as its substrate specificity and details in its regulatory cycle that are based on recent biochemical and structural characterization. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

17.
18.
    
The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this reason, we systematically investigated ubiquitin-protein ligasess from the homologous to E6-AP carboxy terminus (HECT) family for potential individual roles in nuclear transport in Saccharomyces cerevisiae . Here we report that Rsp5, an essential yeast ubiquitin ligase involved in many cellular functions, when deleted or mutated in ligase activity, blocks the nuclear export of mRNAs. Affected messenger RNAs include both total poly(A)+ mRNA and heat-shock mRNAs. Mutation of Rsp5 does not affect nuclear protein import or export. Deletion of RSP5 blocks mRNA export, even under conditions where its essential role in unsaturated fatty acids biosynthesis is bypassed. Using domain mapping, we find that the ligase activity is required for proper mRNA export, indicating that ubiquitination by Rsp5 acts directly or indirectly to affect RNA export. The finding that Rsp5p ligase mutations cause a more pronounced defect at high temperatures suggests that ubiquitination of transport factors by Rsp5p may also be essential during stress conditions.  相似文献   

19.
    
The use of Cre-loxP technology for conditional mutagenesis in pain pathways had been restricted by the unavailability of mice expressing Cre recombinase selectively in functionally distinct components of the nociceptive system. Here we describe the generation of transgenic mouse lines which express Cre recombinase selectively in sensory ganglia using promoter elements of the Na(v)1.8 gene (Scn10a). Cre-mediated recombination was greatly evident in all nociceptive and thermoreceptive neurons of the dorsal root ganglia and trigeminal ganglia, but only in a small proportion of proprioceptive neurons. Cre-mediated recombination was not detectable in the brain, spinal cord, or any nonneural tissues and began perinatally after invasion of primary afferents into the developing spinal cord. Thus, these mice enable selective deletion of genes in subsets of sensory neurons and offer a wide scope for studying potential functions of genes in pain perception, independent of secondary effects arising from developmental defects or global gene ablation.  相似文献   

20.
Gle1 is required for mRNA export in yeast and human cells. Here, we report that two human Gle1 (hGle1) isoforms are expressed in HeLa cells (hGle1A and B). The two encoded proteins are identical except for their COOH-terminal regions. hGle1A ends with a unique four-amino acid segment, whereas hGle1B has a COOH-terminal 43-amino acid span. Only hGle1B, the more abundant isoform, localizes to the nuclear envelope (NE) and pore complex. To test whether hGle1 is a dynamic shuttling transport factor, we microinjected HeLa cells with recombinant hGle1 and conducted photobleaching studies of live HeLa cells expressing EGFP-hGle1. Both strategies show that hGle1 shuttles between the nucleus and cytoplasm. An internal 39-amino acid domain is necessary and sufficient for mediating nucleocytoplasmic transport. Using a cell-permeable peptide strategy, we document a role for hGle1 shuttling in mRNA export. An hGle1 shuttling domain (SD) peptide impairs the export of both total poly(A)+ RNA and the specific dihydrofolate reductase mRNA. Coincidentally, SD peptide-treated cells show decreased endogenous hGle1 localization at the NE and reduced nucleocytoplasmic shuttling of microinjected, recombinant hGle1. These findings pinpoint the first functional motif in hGle1 and link hGle1 to the dynamic mRNA export mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号