首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several lines of evidence indicate that nerve growth factor is important for the development and maintenance of the basal forebrain cholinergic phenotype. In the present study, using rat primary embryonic basal forebrain cultures, we demonstrate the differential regulation of functional cholinergic markers by nerve growth factor treatment (24–96 h). Following a 96‐h treatment, nerve growth factor (1–100 ng/mL) increased choline acetyltransferase activity (168–339% of control), acetylcholine content (141–185%), as well as constitutive (148–283%) and K+‐stimulated (162–399%) acetylcholine release, but increased release was not accompanied by increased high‐affinity choline uptake. Enhancement of ACh release was attenuated by vesamicol (1 µm ), suggesting a vesicular source, and was abolished under choline‐free conditions, emphasizing the importance of extracellular choline as the primary source for acetylcholine synthesized for release. A greater proportion of acetylcholine released from nerve growth factor‐treated cultures than from nerve growth factor‐naïve cultures was blocked by voltage‐gated Ca2+ channel antagonists, suggesting that nerve growth factor modified this parameter of neurotransmitter release. Cotreatment of NGF (20 ng/mL) with K252a (200 nm ) abolished increases in ChAT activity and prevented enhancement of K+‐stimulated ACh release beyond the level associated with K252a, suggesting the involvement of TrkA receptor signaling. Also, neurotrophin‐3, neurotrophin‐4 and brain‐derived neurotrophic factor (all at 5–200 ng/mL) increased acetylcholine release, although they were not as potent as nerve growth factor and higher concentrations were required. High brain‐derived neurotrophic factor concentrations (100 and 200 ng/mL) did, however, increase release to a level similar to nerve growth factor. In summary, long‐term exposure (days) of basal forebrain cholinergic neurons to nerve growth factor, and in a less‐potent fashion the other neurotrophins, enhanced the release of acetylcholine, which was dependent upon a vesicular pool and the availability of extracellular choline.  相似文献   

3.
J. Neurochem. (2012) 122, 1137-1144. ABSTRACT: The α9α10 nicotinic acetylcholine receptor (nAChR) may be a potential target in pathophysiology of the auditory system, chronic pain, and breast and lung cancers. Alpha-conotoxins, from the predatory marine snail Conus, are potent nicotinic antagonists, some of which are selective for the α9α10 nAChR. Here, we report a two order of magnitude species difference in the potency of α-conotoxin RgIA for the rat versus human α9α10 nAChR. We investigated the molecular mechanism of this difference. Heterologous expression of the rat α9 with the human α10 subunit in Xenopus oocytes resulted in a receptor that was blocked by RgIA with potency similar to that of the rat α9α10 nAChR. Conversely, expression of the human α9 with that of the rat α10 subunit resulted in a receptor that was blocked by RgIA with potency approaching that of the human α9α10 receptor. Systematic substitution of residues found in the human α9 subunit into the homologous position in the rat α9 subunit revealed that a single point mutation, Thr56 to Ile56, primarily accounts for this species difference. Remarkably, although the α9 nAChR subunit has previously been reported to provide the principal (+) binding face for binding of RgIA, Thr56 is located in the (-) complementary binding face.  相似文献   

4.
The direct effect of acetylcholine on the activation of the corpora allata (CA) was investigated in the adult male loreyi leafworm, Mythimna loreyi. Acetylcholine, in the presence of the choline esterase inhibitor physostigmine (50 microM), elicited a stimulatory effect on juvenile hormone acids (JHAs) release from the CA. Maximum effect was obtained at concentrations of 10 and 50 microM. Repeated administration of 10 microM acetylcholine on the same CA did not elicit similar stimulatory effect. Since JHA release can be significantly activated by carbachol and not by nicotine, this cholinergic effect is likely to belong to the muscarinic type. The effect of acetylcholine was significantly antagonized by gallamine triethiodide (M(2) antagonist) and 4-DAMP (M(3) antagonist), pirenzepine (M(1) antagonist), and tropicamide (M(4) antagonist) were ineffective. It is concluded that in the adult male M. loreyi, the cholinergic regulation of CA is most likely via M(2) and M(3) muscarinic receptors.  相似文献   

5.
The nicotinic acetylcholine receptor (nAChR) β3 subunit is thought to serve an accessory role in nAChR subtypes expressed in dopaminergic regions implicated in drug dependence and reward. When β3 subunits are expressed in excess, they have a dominant-negative effect on function of selected nAChR subtypes. In this study, we show, in Xenopus oocytes expressing α2, α3 or α4 plus either β2 or β4 subunits, that in the presumed presence of similar amounts of each nAChR subunit, co-expression with wild-type β3 subunits generally (except for α3*-nAChR) lowers amplitudes of agonist-evoked, inward peak currents by 20-50% without having dramatic effects (≤ 2-fold) on agonist potencies. By contrast, co-expression with mutant β3(V9'S) subunits generally (except for α4β2*-nAChR) increases agonist potencies, consistent with an expected gain-of-function effect. This most dramatically demonstrates formation of complexes containing three kinds of subunit. Moreover, for oocytes expressing nAChR containing any α subunit plus β4 and β3(V9'S) subunits, there is spontaneous channel opening sensitive to blockade by the open channel blocker, atropine. Collectively, the results indicate that β3 subunits integrate into all of the studied receptor assemblies and suggest that natural co-expression with β3 subunits can influence levels of expression and agonist sensitivities of several nAChR subtypes.  相似文献   

6.
Glucocorticoids have been shown to influence trophic processes in the nervous system. In particular, they seem to be important for the development of cholinergic neurons in various brain regions. Here, we applied a genetic approach to investigate the role of the glucocorticoid receptor (GR) on the maturation and maintenance of cholinergic medial septal neurons between P15 and one year of age by using a mouse model carrying a CNS-specific conditional inactivation of the GR gene (GRNesCre). The number of choline acetyltransferase and p75NTR immuno-positive neurons in the medial septum (MS) was analyzed by stereology in controls versus mutants. In addition, cholinergic fiber density, acetylcholine release and cholinergic key enzyme activity of these neurons were determined in the hippocampus. We found that in GRNesCre animals the number of medial septal cholinergic neurons was significantly reduced during development. In addition, cholinergic cell number further decreased with aging in these mutants. The functional GR gene is therefore required for the proper maturation and maintenance of medial septal cholinergic neurons. However, the loss of cholinergic neurons in the medial septum is not accompanied by a loss of functional cholinergic parameters of these neurons in their target region, the hippocampus. This pinpoints to plasticity of the septo-hippocampal system, that seems to compensate for the septal cell loss by sprouting of the remaining neurons.  相似文献   

7.
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by poor attention, impulse control and hyperactivity. A significant proportion of ADHD patients are also co‐morbid for other psychiatric problems including mood disorders and these patients may be managed with a combination of psychostimulants and anti‐depressants. While it is generally accepted that enhanced catecholamine signalling via the action of psychostimulants is likely responsible for the cognitive improvement in ADHD, other neurotransmitters including acetylcholine and histamine may be involved. In the present study, we have examined the effect of lisdexamfetamine dimesylate (LDX), an amphetamine pro‐drug that is approved for the treatment of ADHD on acetylcholine and histamine efflux in pre‐frontal cortex and hippocampus alone and in combination with the anti‐depressant s‐citalopram. LDX increased cortical acetylcholine efflux, an effect that was not significantly altered by co‐administration of s‐citalopram. Cortical and hippocampal histamine were markedly increased by LDX, an effect that was attenuated in the hippocampus but not in pre‐frontal cortex when co‐administered with s‐citalopram. Taken together, these results suggest that efflux of acetylcholine and histamine may be involved in the therapeutic effects of LDX and are differentially influenced by the co‐administration of s‐citalopram.

  相似文献   


8.
During synaptogenesis at the neuromuscular junction, nicotinic acetylcholine receptors (AChRs) are organized into high‐density postsynaptic clusters that are critical for efficient synaptic transmission. Rapsyn, an AChR associated cytoplasmic protein, is essential for the aggregation and immobilization of AChRs at the neuromuscular junction. Previous studies have shown that when expressed in nonmuscle cells, both assembled and unassembled AChR subunits are clustered by rapsyn, and the clustering of the α subunit is dependent on its major cytoplasmic loop. In the present study, we investigated the mechanism of rapsyn‐induced clustering of the AChR β, γ, and δ subunits by testing mutant subunits for the ability to cocluster with rapsyn in transfected QT6 cells. For each subunit, deletion of the major cytoplasmic loop, between the third and fourth transmembrane domains, dramatically reduced coclustering with rapsyn. Furthermore, each major cytoplasmic loop was sufficient to mediate clustering of an unrelated transmembrane protein. The AChR subunit mutants lacking the major cytoplasmic loops could assemble into αδ dimers, but these were poorly clustered by rapsyn unless at least one mutant was replaced with its wild‐type counterpart. These results demonstrate that the major cytoplasmic loop of each AChR subunit is both necessary and sufficient for mediating efficient clustering by rapsyn, and that only one such domain is required for rapsyn‐mediated clustering of an assembly intermediate, the αδ dimer. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 486–501, 2003  相似文献   

9.
On neurons of the superior cervical ganglion of 3-week-old rats, we studied the mechanism underlying the blocking effect of mecamylamine on transmembrane currents evoked by iontophoretic application of acetylcholine (ACh currents); these currents were recorded with the use of a patch-clamp technique in the whole-cell configuration. The IC50 of the above agent equaled (2.7 ± 0.3) · 10-10 M. The blocking effect of mecamylamine on ACh current did not depend on the membrane potential and decreased with rise in the concentration of the drug. Thus, a competitive blocking mechanism mostly underlies the above phenomenon.  相似文献   

10.
The protein kinase A–deficient PC12 cell line PC12A123.7 lacks both choline acetyltransferase and the vesicular acetylcholine transporter. This cell line has been used to establish a stably transfected cell line expressing recombinant rat vesicular acetylcholine transporter that is appropriately trafficked to small synaptic vesicles. Acetylcholine is transported by the rat vesicular acetylcholine transporter at a maximal rate of 1.45 nmol acetylcholine/min/mg protein and exhibits a Km for transport of 2.5 mM. The transporter binds vesamicol with a Kd of 7.5 nM. The ability of structural analogs of acetylcholine to inhibit both acetylcholine uptake and vesamicol binding was measured. The results demonstrate that like Torpedo vesicular acetylcholine transporter, the mammalian transporter can bind a diverse group of acetylcholine analogs.  相似文献   

11.
12.
13.
Mathematical modeling was applied to study the dependence of miniature endplate current (MEPC) amplitude and temporal parameters on the values of the rate constants of acetylcholine binding to receptors (k+) when cholinesterase was either active or inactive. The simulation was performed under two different sets of parameters describing acetylcholine receptor activation–one with high and another with low probability (Pohigh and Polow) of receptor transition into the open state after double ligand binding. The dependence of model MEPC amplitudes, rise times, and decay times on k+ differs for set Polow and set Pohigh. The main outcome is that for set Pohigh, the rise time is significantly longer at low values of k+ because of the prolongation of ACh diffusion time to the receptor. For the set Polow, the rise time is shorter at low values of k1, which can be explained by the small probability of AChR forward isomerization after ACh binding and faster MEPC's peak formation.  相似文献   

14.
15.
16.
The formation of the neuromuscular junction (NMJ) is regulated by the nerve-derived heparan sulfate proteoglycan agrin and the muscle-specific kinase MuSK. Agrin induces a signal transduction pathway via MuSK, which promotes the reorganization of the postsynaptic muscle membrane. Activation of MuSK leads to the phosphorylation and redistribution of acetylcholine receptors (AChRs) and other postsynaptic proteins to synaptic sites. The accumulation of high densities of AChRs at postsynaptic regions represents a hallmark of NMJ formation and is required for proper NMJ function. Here we show that phosphoinositide 3-kinase (PI3-K) represents a component of the agrin/MuSK signaling pathway. Muscle cells treated with specific PI3-K inhibitors are unable to form full-size AChR clusters in response to agrin and AChR phosphorylation is reduced. Moreover, agrin-induced activation of Rac and Cdc42 is impaired in the presence of PI3-K inhibitors. PI3-K is localized to the postsynaptic muscle membrane consistent with a role during agrin/MuSK signaling. These results put PI3-K downstream of MuSK as regulator of AChR phosphorylation and clustering. Its role during agrin-stimulated Rac and Cdc42 activation suggests a critical function during cytoskeletal reorganizations, which lead to the redistribution of actin-anchored AChRs.  相似文献   

17.
Nicotine binds to nicotinic acetylcholine receptors and studies in animal models have shown that α4β2 receptors mediate many behavioral effects of nicotine. Human genetics studies have provided support that variation in the gene that codes for the α4 subunit influences nicotine dependence (ND), but the evidence for the involvement of the β2 subunit gene is less convincing. In this study, we examined the genetic association between variation in the genes that code for the α4 (CHRNA4) and β2 (CHRNB2) subunits of the nicotinic acetylcholine receptor and a quantitative measure of lifetime DSM‐IV ND symptom counts. We performed this analysis in two longitudinal family‐based studies focused on adolescent antisocial drug abuse: the Center on Antisocial Drug Dependence (CADD, N = 313 families) and Genetics of Antisocial Drug Dependence (GADD, N = 111 families). Family‐based association tests were used to examine associations between 14 single nucleotide polymorphisms (SNPs) in CHRNA4 and CHRNB2 and ND symptoms. Symptom counts were corrected for age, sex and clinical status prior to the association analysis. Results, when the samples were combined, provided modest evidence that SNPs in CHRNA4 are associated with ND. The minor allele at both rs1044394 (A; Z = 1.988, P = 0.047, unadjusted P‐value) and rs1044396 (G; Z = 2.398, P = 0.017, unadjusted P‐value) was associated with increased risk of ND symptoms. These data provide suggestive evidence that variation in the α4 subunit of the nicotinic acetylcholine receptor may influence ND liability.  相似文献   

18.
RIC‐3 enhances the functional expression of certain nicotinic acetylcholine receptors (nAChRs) in vertebrates and invertebrates and increases the availability of functional receptors in cultured cells and Xenopus laevis oocytes. Maximal activity of RIC‐3 may be cell‐type dependent, so neither mammalian nor invertebrate proteins is optimal in amphibian oocytes. We cloned the X. laevis ric‐3 cDNA and tested the frog protein in oocyte expression studies. X. laevis RIC‐3 shares 52% amino acid identity with human RIC‐3 and only 17% with that of Caenorhabditis elegans. We used the C. elegans nicotinic receptor, ACR‐16, to compare the ability of RIC‐3 from three species to enhance receptor expression. In the absence of RIC‐3, the proportion of oocytes expressing detectable nAChRs was greatly reduced. Varying the ratio of acr‐16 to X. laevis ric‐3 cRNAs injected into oocytes had little impact on the total cell current. When X. laevis, human or C. elegans ric‐3 cRNAs were co‐injected with acr‐16 cRNA (1 : 1 ratio), 100 μM acetylcholine induced larger currents in oocytes expressing X. laevis RIC‐3 compared with its orthologues. This provides further evidence for a species‐specific component of RIC‐3 activity, and suggests that X. laevis RIC‐3 is useful for enhancing the expression of invertebrate nAChRs in X. laevis oocytes.  相似文献   

19.
Eleven regions of mouse brain and twelve layers of monkey retina were assayed for choline acetyl transferase (ChAT), acetylcholine esterase (AChE), and 4 enzymes that synthesize acetyl CoA. The purpose was to seek evidence concerning the source of acetyl CoA for acetylcholine generation. In brain ATP citrate lyase was strongly correlated with ChAT as well as AChE (r=0.914 in both cases). Weak, but statistically significant correlation, was observed between ChAT and both cytoplasmic and mitochondrial thiolase, whereas there was a significant negative correlation between ChAT and acetyl thiokinase. In retina ChAT was essentially limited to the inner plexiform and ganglion cell layers, whereas substantial AChE activity extended as well into inner nuclear, outer plexiform and fiber layers, but no further. ATP citrate lyase activity was also highest in the inner four retinal layers, but was not strongly correlated with either ChAT or AChE (r=0.724 and 0.761, respectively). Correlation between ChAT and acetyl thiokinase was at least as strong (r=0.757), and in the six inner layers of retina, the correlation between ChAT and acetylthiokinase was very strong (r=0.932).Special issue dedicated to Dr. Lawrence Austin  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号