首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The plasma metabolites triglycerides (TRIG) and β‐hydroxybutyrate (BUTY) are used as indices of nutritional condition in migrating birds during refuelling and can provide a measure of relative fattening rates in individual birds. Because non‐migratory birds wintering at northern latitudes also fatten on a daily basis to support their overnight fast, blood metabolites could provide a useful tool to measure individual performance in energy acquisition. However, daily patterns of metabolite change may differ between species and could be affected by thermoregulatory requirements. We studied daily variation in TRIG and BUTY over a complete winter in Black‐capped Chickadees to determine the pattern of daily and seasonal change in these markers. We also assessed how short‐term variation (up to 7 days) in weather parameters that influence heat exchange may affect TRIG and BUTY levels. In contrast to a linear gain of body mass, TRIG increased non‐linearly during the day, with a rapid increase in the morning that levelled off in the afternoon, whereas BUTY did not change significantly. Metabolites varied with sampling time and the seasonal change in day length, suggesting higher fat catabolism and fattening rates in mid‐winter. TRIG and BUTY also differed between capture sites, possibly due to differences in shelter quality. Weather variation did not affect TRIG levels and had a significant but marginal effect on BUTY, explaining at best 3% of the variation. Our results suggest that these markers can be used as indicators of energy turnover in resident wintering passerines.  相似文献   

2.
To model the effects of global climate phenomena on avian population dynamics, we must identify and quantify the spatial and temporal relationships between climate, weather and bird populations. Previous studies show that in Europe, the North Atlantic Oscillation (NAO) influences winter and spring weather that in turn affects resident and migratory landbird species. Similarly, in North America, the El Niño/Southern Oscillation (ENSO) of the Pacific Ocean reportedly drives weather patterns that affect prey availability and population dynamics of landbird species which winter in the Caribbean. Here we show that ENSO‐ and NAO‐induced seasonal weather conditions differentially affect neotropical‐ and temperate‐wintering landbird species that breed in Pacific North‐west forests of North America. For neotropical species wintering in western Mexico, El Niño conditions correlate with cooler, wetter conditions prior to spring migration, and with high reproductive success the following summer. For temperate wintering species, springtime NAO indices correlate strongly with levels of forest defoliation by the larvae of two moth species and also with annual reproductive success, especially among species known to prey upon those larvae. Generalized linear models incorporating NAO indices and ENSO precipitation indices explain 50–90% of the annual variation in productivity reported for 10 landbird species. These results represent an important step towards spatially explicit modelling of avian population dynamics at regional scales.  相似文献   

3.
Sex biases in distributions of migratory birds during the non‐breeding season are widespread; however, the proximate mechanisms contributing to broad‐scale sex‐ratio variation are not well understood. We analyzed a long‐term winter‐banding dataset in combination with spring migration data from individuals tracked by using geolocators to test three hypotheses for observed variation in sex‐ratios in wintering flocks of snow buntings Plectrophenax nivalis. We quantified relevant weather conditions in winter (temperature, snowfall and snow depth) at each banding site each year and measured body size and condition (fat scores) of individual birds (n > 5500). We also directly measured spring migration distance for 17 individuals by using light‐level geolocators. If the distribution pattern of birds in winter is related to interactions between individual body size and thermoregulation, then larger bodied birds (males) should be found in colder sites (body size hypothesis). Males may also winter closer to breeding grounds to reduce migration distance for early arrival at breeding sites (arrival timing hypothesis). Finally, males may be socially dominant over females, and thus exclude females from high‐quality wintering sites (social dominance hypothesis). We found support for the body size hypothesis, in that colder and snowier weather predicted both larger body size and higher proportions of males banded. Direct tracking revealed that males did not winter significantly closer to their breeding site, despite being slightly further north on average than females from the same breeding population. We found some evidence for social dominance, in that females tended to carry more fat than males, potentially indicating lower habitat quality for females. Global climatic warming may reduce temperature constraints on females and smaller‐bodied males, resulting in broad‐scale changes in distributional patterns. Whether this has repercussions for individual fitness, and therefore population demography, is an important area of future research.  相似文献   

4.
Depending on the habitats they live in, temperate ungulates have adapted to different degrees to seasonally changing forage and weather conditions, and to specific escape strategies from predators. Alpine chamois, a mountain ungulate, and red deer, originally adapted to open plains, would therefore be expected to differ in their physiological responses to potential stressors. Based on 742 chamois and 1557 red deer fecal samples collected year‐round every 2 weeks for 4 years at the same locations within a strictly protected area in the Swiss Alps, we analyzed glucocorticoid metabolite (FGM) concentrations for both species. Results from linear mixed effects models revealed no physiological stress response to changing visitor numbers, but instead to drought conditions for both species during summer. In winter, FGM concentrations increased with increasing snow height in both species, but this response was modulated by temperature in red deer. Chamois showed a stronger stress response to increasing snow height during November and December than between January and March, while FGM concentrations increased with decreasing temperature throughout winter. An increase in FGM concentrations with decreasing forage digestibility during winter was found only for red deer. The results are thus partly in contradiction to expectations based on feeding type and adaptations to different habitats between the two species. The lack of a response to forage digestibility in chamois may reflect either better adaptation to difficult feeding conditions in subalpine forests, or, by contrast, strong constraints imposed by forage quality. The similar responses of both species to weather conditions in winter suggest that climatic factors at the elevations examined here are sufficiently harsh to be limiting to temperate ungulates regardless of their specific adaptations to this environment.  相似文献   

5.
Although feathers are the unifying characteristic of all birds, our understanding of the causes, mechanisms, patterns and consequences of the feather moult process lags behind that of other major avian life‐history phenomena such as reproduction and long‐distance migration. Migration, which evolved in many species of the temperate and arctic zones, requires high energy expenditure to endure long‐distance journeys. About a third of Western‐Palearctic passerines perform long‐distance migrations of thousands of kilometres each year using various morphological, physiological, biomechanical, behavioural and life‐history adaptations. The need to include the largely non‐overlapping breeding, long‐distance migration and feather moult processes within the annual cycle imposes a substantial constraint on the time over which the moult process can take place. Here, we review four feather‐moult‐related adaptations which, likely due to time constraints, evolved among long‐distance Western‐Palearctic migrants: (i) increased moult speed; (ii) increased overlap between moult and breeding or migration; (iii) decreased extent of plumage moult; and (iv) moult of part or all of the plumage during the over‐wintering period in the tropics rather than in the breeding areas. We suggest that long‐distance migration shaped the evolution of moult strategies and increased the diversity of these strategies among migratory passerines. In contrast to this variation, all resident passerines in the Western Palearctic moult immediately after breeding by renewing the entire plumage of adults and in some species also juveniles, while in other species juvenile moult is partial. We identify important gaps in our current understanding of the moult process that should be addressed in the future. Notably, previous studies suggested that the ancestral moult strategy is a post‐breeding summer moult in the Western Palearctic breeding areas and that moult during the winter evolved due to the scheduling of long‐distance migration immediately after breeding. We offer an alternative hypothesis based on the notion of southern ancestry, proposing that the ancestral moult strategy was a complete moult during the ‘northern winter’ in the Afro‐tropical region in these species, for both adults and juveniles. An important aspect of the observed variation in moult strategies relates to their control mechanisms and we suggest that there is insufficient knowledge regarding the physiological mechanisms that are involved, and whether they are genetically fixed or shaped by environmental factors. Finally, research effort is needed on how global climate changes may influence avian annual routines by altering the scheduling of major processes such as long‐distance migration and feather moult.  相似文献   

6.
Populations of migratory songbirds in western Europe show considerable variation in population trends between species and regions. The demographic and environmental causes of these large‐scale patterns are poorly understood. Using data from Constant Effort mist‐netting studies, we investigated relationships between changes in abundance, adult survival and seasonal weather conditions among 35 western European populations of eight species of migratory warblers (Sylviidae). We used cross‐species and within‐species comparisons to assess whether annual variation in survival was correlated with weather conditions during passage or winter. We estimated survival using CJS mark‐recapture models accounting for variation in the proportion of transient individuals and recapture rates. Species wintering in the humid bioclimatic zone of western Africa had significantly higher annual survival probabilities than species wintering in the arid bioclimatic zone of Africa (the Sahel). Rainfall in the Sahel was positively correlated with survival in at least some populations of five species. We found substantially fewer significant relationships with indices of weather during the autumn and spring passage periods, which may be due to the use of broad‐scale indices. Annual population changes were correlated with adult survival in all of our study species, although species undergoing widespread declines showed the weakest relationships.  相似文献   

7.
Migratory species can exploit many habitats over vast geographic areas and adopt various patterns of space and habitat use throughout their annual cycle. In nomadic species, determinants of habitat use during the non‐breeding season are poorly known due to the unpredictability of their movement patterns. Here, we analysed variability in wintering space and habitat use by a highly nomadic species, the snowy owl, in eastern North America. Using 21 females tracked by satellite telemetry between 2007 and 2016, we 1) assessed how space use patterns in winter varied according to the type of environment (marine vs terrestrial), latitudinal zone (Arctic vs temperate), local snow conditions and lemming densities and 2) investigated winter habitat and site fidelity. Our results confirmed a high inter‐individual variation in patterns of habitat use by wintering snowy owls. Highly‐used areas were concentrated in the Arctic and in the marine and coastal environments. Owls wintering in the marine environment travelled over longer distances during the winter, had larger home ranges and these were divided in more smaller zones than individuals in terrestrial environments. Wintering home range sizes decreased with high winter lemming densities, use of the marine environment increased following high summer lemming densities, and a thick snow cover in autumn led to later settlement on the wintering ground. Contrary to expectations, snowy owls tended to make greater use of the marine environment when snow cover was thin. Snowy owls were highly consistent in their use of a given wintering environment and a specific latitudinal zone between years, but demonstrated flexibility in their space use and a modest site fidelity. The snowy owls’ consistency in wintering habitat use may provide them with advantages in terms of experience but their mobility and flexibility may help them to cope with changing environmental conditions at fine spatial scale.  相似文献   

8.
During severe weather, Redshanks suffer the heaviest mortality amongst all the shorebird species wintering around the North Sea coasts of the British Isles. An earlier study had suggested that this resulted from a failure to accumulate sufficient body fat reserves before mid-winter. Detailed field studies in northeast England between 1993 and 1995 of seasonal changes in body mass, and in estimated lean and fat masses, of two races of Redshank, both of which winter in the same estuary, were accompanied by similar studies of small numbers held in captivity with unlimited food. After differences in body size were allowed for, there were no differences in body composition and its seasonal pattern of change in birds of the Icelandic and British races. Body mass changes in wild birds paralleled those in captives between November and March, and mid-winter levels were not limited by food supply; indeed they were slightly higher in a winter with lower prey densities. It is concluded that Redshanks regulate body mass and, indirectly, fat reserves at levels set by a trade-off between the risks of predation and starvation. Unlike most other shorebird species, they take very small prey in relation to their body size and hence must feed for long periods during each tidal cycle to achieve their daily energy intake needs. Thus they have little scope to extend their feeding time during severe weather, which also forces them to feed on ice-free exposed coastal habitats where wind chill cannot be avoided. Both factors lead to more rapid depletion of fat reserves than in other species which have higher energy intake rates or lower total daily requirements.  相似文献   

9.
Uneven winter snow influence on tree growth across temperate China   总被引:1,自引:0,他引:1  
Winter snow is an important driver of tree growth in regions where growing‐season precipitation is limited. However, observational evidence of this influence at larger spatial scales and across diverse bioclimatic regions is lacking. Here, we investigated the interannual effects of winter (here defined as previous October to current February) snow depth on tree growth across temperate China over the period of 1961–2015, using a regional network of tree ring records, in situ daily snow depth observations, and gridded climate data. We report uneven effects of winter snow depth on subsequent growing‐season tree growth across temperate China. There shows little effect on tree growth in drier regions that we attribute mainly to limited snow accumulation during winter. By contrast, winter snow exerts important positive influence on tree growth in stands with high winter snow accumulation (e.g., in parts of cold arid regions). The magnitude of this effect depends on the proportion of winter snow to pre‐growing‐season (previous October to current April) precipitation. We further observed that tree growth in drier regions tends to be increasingly limited by warmer growing‐season temperature and early growing‐season water availability. No compensatory effect of winter snow on the intensifying drought limitation of tree growth was observed across temperate China. Our findings point toward an increase in drought vulnerability of temperate forests in a warming climate.  相似文献   

10.
1. We studied fat storage in a population of greenish leaf warblers ( Phylloscopus trochiloides ) in southern India over four winters (1993–97). This species breeds in temperate regions and overwinters in India from October to April.
2. Diurnal variation in fat scores was comparable to that seen among temperate wintering passerines. Seasonal variation was slight, except for premigratory fattening. There was significant annual variation: in drier winters, which were also winters of low food supplies, fat scores were higher.
3. Energy metabolized overnight is unlikely to vary across winters, and annual variation in fat scores is considered a response to uncertainty of food intake on a given day. Fat scores varied inversely with short-term rainfall, which drives the abundance of arthropod prey.
4. Annual variation in fat scores was not accompanied by changes in total body mass. This suggests that protein reserves were being compromised by increased fat deposition in dry years and offers an explanation for the observed delay in moult during drier winters. These results suggest that strategies for maximizing short-term probability of survival translate into future fitness costs, and may shape long-term life-history strategies through simple physiological processes.  相似文献   

11.
Projections of future climate suggest increases in global temperatures that are especially pronounced in winter in cold‐temperate regions. Thermal insulation provided by snow cover to litter, soil, and overwintering plants will likely be affected by changing winter temperatures and might influence future species composition and ranges. We investigated effects of changing snow cover on seed germination and sapling survival of several cold‐temperate tree species using a snow manipulation approach. Post‐winter seed germination increased or decreased with increasing snow cover, depending on species; decreased seed germination was found in species that characteristically disperse seed in summer or fall months prior to snowfall. Post‐winter sapling survival increased with increasing snow cover for all species, though some species benefitted more from increased snow cover than others. Sapling mortality was associated with root exposure, suggesting the possibility that soil frost heaving could be an important mechanism for observed effects. Our results suggest that altered snow regimes may cause re‐assembly of current species habitat relationships and may drive changes in species’ biogeographic range. However, local snow regimes also vary with associated vegetation cover and topography, suggesting that species distribution patterns may be strongly influenced by spatial heterogeneity in snow regimes and complicating future projections.  相似文献   

12.
For migrant birds, which habitats are suitable during the non‐breeding season influences habitat availability, population resilience to habitat loss, and ultimately survival. Consequently, habitat preferences during winter and whether habitat segregation according to age and sex occurs directly influences migration ecology, survival and breeding success. We tested the fine‐scale habitat preferences of a declining Palearctic migrant, the whinchat Saxicola rubetra, on its wintering grounds in west Africa. We explored the influence of habitat at the territory‐scale and whether dominance‐based habitat occupancy occurs by describing the variation in habitat characteristics across wintering territories, the degree of habitat change within territories held throughout winter, and whether habitat characteristics influenced territory size and space‐use within territories or differed with age and sex. Habitat characteristics varied substantially across territories and birds maintained the same territories even though habitat changed significantly throughout winter. We found no evidence of dominance‐based habitat occupancy; instead, territories were smaller if they contained more perching shrubs or maize crops, and areas with more perching shrubs were used more often within territories, likely because perches are important for foraging and territory defence. Our findings suggest that whinchats have non‐specialised habitat requirements within their wintering habitat of open savannah and farmland, and respond to habitat variation by adjusting territory size and space‐use within their territories instead of competing with conspecifics. Whinchats show a tolerance for human‐modified habitats and results support previous findings that some crop types may provide high‐quality wintering habitat by increasing perch density and foraging opportunities. By having non‐specialised requirements within broad winter habitat types, migrants are likely to be flexible to changing wintering conditions in Africa, both within and across winters, so possibly engendering some resilience to the rapid anthropogenic habitat degradation occurring throughout their wintering range.  相似文献   

13.
While the effect of weather on reproduction has been studied for many years in avian taxa, the rapid pace of climate change in arctic regions has added urgency to this question by changing the weather conditions species experience during breeding. Given this, it is important to understand how factors such as temperature, rain, snowfall, and wind affect reproduction both directly and indirectly (e.g. through their effects on food availability). In this study, we ask how weather factors and food availability influence daily survival rates of clutches in two arctic‐breeding migratory songbirds: the Lapland longspur Calcarius lapponicus, a circumpolar breeder, and Gambel's white‐crowned sparrow Zonotrichia leucophrys gambelii, which breeds in shrubby habitats across tundra, boreal and continental climates. To do this, we monitored clutch survival in these two species from egg‐lay through fledge at field sites located near Toolik Field Station (North Slope, Alaska) across 5 yr (2012–2016). Our results indicate that snowfall and cold temperatures decreased offspring survival rates in both species; although Lapland longspurs were more susceptible to snowfall. Food availability, quantified by pitfall sampling and sweep‐net sampling methods, had minimal effects on offspring survival. Some climate models predict increased precipitation for the Arctic with global warming, and in the Toolik region, total snow accumulation may be increasing. Placed in this context, our results suggest that changes in snow storms with climate change could have substantial consequences for reproduction in migratory songbirds breeding in the North American Arctic.  相似文献   

14.
Juli Broggi  Esa Hohtola  Kari Koivula 《Ibis》2021,163(1):260-267
The plastic regulation of internal energy reserves is acknowledged as the main adaptive response to winter conditions of resident small birds in northern latitudes, a strategy that may be altered whenever human‐supplemented food is available. We investigated the effects of supplementary feeding on the energy management strategy of two wild passerine species, the Willow Tit Poecile montanus and Blue Tit Cyanistes caeruleus, wintering in boreal conditions by measuring body mass and the energy cost of living, i.e. basal metabolic rate. Individuals of both species were heavier, larger and exhibited a higher energy cost of living when captured at the feeders than were individuals captured away from feeders. Fed Willow Tits expended more energy in maintenance, although this difference disappeared once mass was accounted for. Conversely, Blue Tits at feeders had higher mass‐adjusted energy cost of living, but only at low ambient temperatures. The results indicate that winter feeding has species‐specific effects on overall energy management strategy and modifies the response to environmental conditions of wintering passerines.  相似文献   

15.
1. Diapause is a dynamic process of low metabolic activity that allows insects to survive periods of harsh conditions. Notwithstanding the lowered metabolism, and because diapausing insects have no access to food, diapause has an energetic cost that may affect post‐diapause performance. 2. Previous studies on the solitary bee Osmia lignaria have shown that prolonged pre‐wintering periods (the time during which individuals already in diapause remain at warm temperatures) are associated with elevated lipid consumption, fat body depletion, and body weight loss. The present study investigated whether prolonged pre‐wintering also affects reproduction, i.e. whether the costs associated with diapause could have an effect on post‐diapause performance in this species. 3. Females were exposed to a range of pre‐wintering conditions, and ovary development and individual post‐wintering performance were monitored throughout their adult life span. 4. No evidence of an effect of pre‐wintering duration on post‐diapause reproductive success was found. Expected differences in the timing of establishment were not observed because ovary maturation was, surprisingly, not arrested during pre‐wintering. Prolonged pre‐wintering duration did not result in decreased life span, probably because emerging females could rapidly replenish their metabolic reserves through feeding. However, there was a very strong effect of the duration of the pre‐emergence period on the likelihood of nest establishment. 5. Longevity, the main factor determining fecundity in Osmia, is subjected to high levels of intrinsic variability, even among females of similar size exposed to identical conditions during development and nesting.  相似文献   

16.
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post‐Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high‐resolution range map of this climate‐sensitive species, Callitropsis nootkatensis (yellow‐cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (相似文献   

17.
The recent shift of Rhagoletis pomonella Walsh (Diptera: Tephritidae) from its ancestral host hawthorn to apple is a model for incipient sympatric speciation in action. Previous studies have shown that changes in the over‐wintering pupal diapause are critical for differentially adapting R. pomonella flies to a difference in the fruiting times of apples vs. hawthorns, generating ecologically based reproductive isolation. Here, we exposed pupae of the hawthorn race to various combinations of pre‐ and over‐wintering rearing conditions and analyzed their effects on eclosion time and genetics. We report certain unexpected results in regards to a combination of brief pre‐winter and over‐wintering periods indicative of gene*environment interactions requiring a reassessment of our current understanding of R. pomonella diapause. We present a hypothesis that involves physiological factors related to stored energy reserves in pupae that influences the depth and duration of Rhagoletis diapause. This ‘pupal energy reserve’ hypothesis can account for our findings and help clarify the role host plant‐related life history adaptation plays in phytophage biodiversity.  相似文献   

18.
Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface‐atmosphere exchanges with vegetation inventories and chamber‐based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post‐clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short‐wave and long‐wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest.  相似文献   

19.
Changes in snow and ice conditions are some of the most distinctive impacts of global warming in cold temperate and Arctic regions, altering the environment during a critical period for survival for most animals. Laboratories studies have suggested that reduced ice cover may reduce the survival of stream dwelling fishes in Northern environments. This, however, has not been empirically investigated in natural populations in large rivers. Here, we examine how the winter survival of juvenile Atlantic salmon in a large natural river, the River Alta (Norway, 70°N), is affected by the presence or absence of surface ice. Apparent survival rates for size classes corresponding to parr and presmolts were estimated using capture‐mark‐recapture and Cormack‐Jolly‐Seber models for an ice‐covered and an ice‐free site. Apparent survival (Φ) in the ice‐covered site was greater than in the ice‐free site, but did not depend on size class (0.64 for both parr and presmolt). In contrast, apparent survival in the ice‐free site was lower for larger individuals (0.33) than smaller individuals (0.45). The over‐winter decline in storage energy was greater for the ice‐free site than the ice‐covered site, suggesting that environmental conditions in the ice‐free site caused a strong depletion in energy reserves likely affecting survival. Our findings highlight the importance of surface ice for the winter survival of juvenile fish, thus, underpinning that climate change, by reducing ice cover, may have a negative effect on the survival of fish adapted to ice‐covered habitats during winter.  相似文献   

20.
Iridescent colours produced during moult likely play an important role in pair formation in birds. We sought to quantify geographic variation in such colouration in a duck species, Eurasian teal Anas crecca, in winter (when mating occurs) to evaluate whether this variation reflects birds’ breeding origins or differential individual migration strategies in both males and females. We combined information on feather production region and individual attributes (body size, sex and age) of Eurasian teal from 82 wintering sites in France. Feather production region (moult site or natal origin) was inferred using feather deuterium values (δDf). We performed spectral measurements to evaluate speculum colour and brightness contrasts for 1052 teal collected over four years. Colouration differed strongly among wintering regions, with birds wintering in eastern France exhibiting higher colour contrast than those wintering in the west. Body size and colouration were positively related. There were no differences in cohort‐specific δDf values between separate wintering regions in France, indicating that within a winter quarter teal originated from areas across the entire breeding range. Overall, patterns of spatial variation in feather colouration were related most closely to body size which was consistent with predictions of a differential migration hypothesis, with larger and more colour‐contrasting birds wintering closer to their breeding grounds. Because moult speed is also known to affect colour production, early breeders or individuals that skipped reproduction may have invested more or earlier in their feather quality to gain potential advantages in monopolizing future mates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号