首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

3.
IL‐17 plays a key role in a variety of autoimmune diseases. MCP‐1 is involved in the infiltration of mononuclear cells of myocardium in VMC. However, the relationship between IL‐17 and MCP‐1 in myocardial injury remains unclear. In this study, expression of MCP‐1 mRNA and protein in cardiac myocytes was detected with qRT‐PCR and ELISA, respectively. It was found that IL‐17A induced MCP‐1 expression in a dose‐ and time‐dependent manner in cardiac myocytes, which could be blocked by IL‐17A and IL‐17RA neutralizing antibodies. NF‐κB p65 and p‐p65 protein expression in cardiac myocytes was studied with western blotting. Rates of p‐p65 in whole lysates and in nuclear lysates all increased in the first 15 min. Meanwhile, the amount of NF‐κB p65 in whole lysates did not change, but the amount of NF‐κB p65 in nuclear lysates increased in the first 15 min. Then the optimal sequence and concentration of NF‐κB p65 siRNAs was selected. After transfection of 10 nM siRNA‐2 of NF‐κB p65 into cardiac myocytes before stimulation by IL‐17A, expression of MCP‐1 mRNA and protein obviously decreased. In conclusion, expression of MCP‐1 induced by IL‐17 requires NF‐κB through the phosphorylation of p65 in cardiac myocytes, which is meaningful to study the onset of chronic viral myocarditis and will provide a new target for the treatment of viral myocarditis.
  相似文献   

4.
The cellular inhibitor of apoptosis (c‐IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)‐mediated signalling. Through their E3 ligase activity c‐IAP proteins promote ubiquitination of receptor‐interaction protein 1 (RIP1), NF‐κB‐inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c‐IAP proteins, TNFR‐mediated activation of NF‐κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c‐IAP‐associated deubiquitinating enzyme that regulates c‐IAP1 stability. OTUB1 disassembles K48‐linked polyubiquitin chains from c‐IAP1 in vitro and in vivo within the TWEAK receptor‐signalling complex. Downregulation of OTUB1 promotes TWEAK‐ and IAP antagonist‐stimulated caspase activation and cell death, and enhances c‐IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK‐induced activation of canonical NF‐κB and MAPK signalling pathways and modulates TWEAK‐induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c‐IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF‐κB and MAPK signalling pathways and TNF‐dependent cell death by modulating c‐IAP1 stability.  相似文献   

5.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

7.
Inflammation and oxidative stress plays an important role in the development of obesity‐related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti‐inflammatory, antioxidant and anti‐cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti‐inflammatory activity in lipopolysaccharide‐stimulated macrophages. However, its ability to alleviate obesity‐induced heart injury via its anti‐inflammatory actions was unclear. This study was designed to evaluate the cardioprotective effects of X22 using cell culture studies and a high‐fat diet rat model. We observed that palmitic acid treatment in cardiac‐derived H9c2 cells induced a significant increase in reactive oxygen species, inflammation, apoptosis, fibrosis and hypertrophy. All of these changes were inhibited by treatment with X22. Furthermore, oral administration of X22 suppressed high‐fat diet‐induced oxidative stress, inflammation, apoptosis, hypertrophy and fibrosis in rat heart tissues and decreased serum lipid concentration. We also found that the anti‐inflammatory and anti‐oxidative actions of X22 were associated with Nrf2 activation and nuclear factor‐kappaB (NF‐κB) inhibition, respectively, both in vitro and in vivo. The results of this study indicate that X22 may be a promising cardioprotective agent and that Nrf2 and NF‐κB may be important therapeutic targets for obesity‐related complications.  相似文献   

8.
Previous studies have shown that the tumor necrosis factor‐α (TNF‐α) levels in serum and bone tissues formed in avascular necrosis of femoral head (ANFH) patients were higher than those of normal individuals, indicating TNF‐α might play a role in the pathogenesis of ANFH. However, the underlying mechanisms remain unclear. Hematoxylin and eosin staining was performed to show the pathological changes of ANFH bone tissues. TNF‐α expression in normal and ANFH tissues was examined by quantitative real‐time polymerase chain reaction and western blot analyses. Osteoblast autophagy and apoptosis, as well as signaling pathways activation, were measured by their corresponding marker proteins. Osteoblast proliferation, autophagy, and apoptosis were evaluated using cell counting kit‐8, transmission electron microscopy, and flow cytometry. The structures of bone tissues of ANFH were obviously damaged. TNF‐α expression was significantly upregulated in ANFH bone tissues compared to normal tissues. Autophagy and apoptosis were remarkably promoted, and p38 mitogen‐activated protein kinase (MAPK)/nuclear factor‐κB (NF‐κB) signaling pathways were markedly activated in ANFH. Suppression of the p38 MAPK/NF‐κB pathway significantly attenuated the TNF‐α‐induced autophagy, however, enhanced the TNF‐α‐induced apoptosis in osteoblasts. Increased TNF‐α in ANFH regulated osteoblast autophagy and apoptosis by p38 MAPK/NF‐κB signaling pathways, blocking the pathway by inhibitors exacerbated TNF‐α‐induced apoptosis through impairing autophagy flux.  相似文献   

9.
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP‐9) expression and protein secretion through the activation of MAPK‐ERK and NF‐κB signaling pathways. Previously, we demonstrated that activated α2‐macroglulin (α2M*) through the interaction with its receptor low‐density lipoprotein receptor‐related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK‐ERK1/2. In the present work, we examined whether α2M*/LRP1interaction could induce the MMP‐9 production in J774 and Raw264.7 macrophage‐derived cell lines. It was shown that α2M* promoted MMP‐9 expression and protein secretion by LRP1 in both macrophage‐derived cell lines, which was mediated by the activation of MAPK‐ERK1/2 and NF‐κB. Both intracellular signaling pathways activated by α2M* were effectively blocked by calphostin‐C, suggesting involvement of PKC. In addition, we demonstrate that α2M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA‐AM, the α2M*‐induced MAPK‐ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF‐κB, it was shown that the α2M*‐induced MMP‐9 protein secretion was inhibited, indicating that the MMP production promoted by the α2M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression. J. Cell. Biochem. 111: 607–617, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Diabetic cardiomyopathy is characterized by diabetes‐induced myocardial abnormalities, accompanied by inflammatory response and alterations in inflammation‐related signalling pathways. Kirenol, isolated from Herba Siegesbeckiae, has potent anti‐inflammatory properties. In this study, we aimed to investigate the cardioprotective effect of kirenol against DCM and underlying the potential mechanisms in a type 2 diabetes mellitus model. Kirenol treatment significantly decreased high glucose‐induced cardiofibroblasts proliferation and increased the cardiomyocytes viability, prevented the loss of mitochondrial membrane potential and further attenuated cardiomyocytes apoptosis, accompanied by a reduction in apoptosis‐related protein expression. Kirenol gavage could affect the expression of pro‐inflammatory cytokines in a dose‐dependent manner but not lower lipid profiles, and only decrease fasting plasma glucose, fasting plasma insulin and mean HbA1c levels in high‐dose kirenol‐treated group at some time‐points. Left ventricular dysfunction, hypertrophy, fibrosis and cell apoptosis, as structural and functional abnormalities, were ameliorated by kirenol administration. Moreover, in diabetic hearts, oral kirenol significantly attenuated activation of mitogen‐activated protein kinase subfamily and nuclear translocation of NF‐κB and Smad2/3 and decreased phosphorylation of IκBα and both fibrosis‐related and apoptosis‐related proteins. In an Electrophoretic mobility shift assay, the binding activities of NF‐κB, Smad3/4, SP1 and AP‐1 in the nucleus of diabetic myocardium were significantly down‐regulated by kirenol treatment. Additionally, high dose significantly enhanced myocardial Akt phosphorylation without intraperitoneal injection of insulin. Kirenol may have potent cardioprotective effects on treating for the established diabetic cardiomyopathy, which involves the inhibition of inflammation and fibrosis‐related signalling pathways and is independent of lowering hyperglycaemia, hyperinsulinemia and lipid profiles.  相似文献   

11.
In type 1 and type 2 diabetes mellitus, increased cardiac fibrosis, stiffness and associated diastolic dysfunction may be the earliest pathological phenomena in diabetic cardiomyopathy. Endothelial‐mesenchymal transition (EndMT) in endothelia cells (ECs) is a critical cellular phenomenon that increases cardiac fibroblasts (CFs) and cardiac fibrosis in diabetic hearts. The purpose of this paper is to explore the molecular mechanism of miR‐21 regulating EndMT and cardiac perivascular fibrosis in diabetic cardiomyopathy. In vivo, hyperglycaemia up‐regulated the mRNA level of miR‐21, aggravated cardiac dysfunction and collagen deposition. The condition was recovered by inhibition of miR‐21 following with improving cardiac function and decreasing collagen deposition. miR‐21 inhibition decreased cardiac perivascular fibrosis by suppressing EndMT and up‐regulating SMAD7 whereas activating p‐SMAD2 and p‐SMAD3. In vitro, high glucose (HG) up‐regulated miR‐21 and induced EndMT in ECs, which was decreased by inhibition of miR‐21. A highly conserved binding site of NF‐κB located in miR‐21 5′‐UTR was identified. In ECs, SMAD7 is directly regulated by miR‐21. In conclusion, the pathway of NF‐κB/miR‐21/SMAD7 regulated the process of EndMT in T1DM, in diabetic cardiomyopathy, which may be regarded as a potential clinical therapeutic target for cardiac perivascular fibrosis.  相似文献   

12.
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti‐inflammatory, anti‐oxidant and anti‐apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)‐induced heart failure mouse model, through mitigating the TNF‐α–induced toxicity. We further used TNF‐α‐induced cardiac injury in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) to elucidate the underlying mechanisms. CGA pre‐treatment could reverse TNF‐α–induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF‐κB/p65 and major mitogen‐activated protein kinases (MAPKs) signalling pathways involved in TNF‐α–induced apoptosis of hiPSC‐CMs. Importantly, CGA can directly inhibit NF‐κB signal by suppressing the phosphorylation of NF‐κB/p65. As for the MAPKs, CGA suppressed the activity of only c‐Jun N‐terminal kinase (JNK), but enhanced extracellular signal‐regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF‐κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.  相似文献   

13.
Inflammation and oxidative stress play a crucial role in the development of diabetic cardiomyopathy (DCM). We previously had synthesized an Aza resveratrol–chalcone derivative 6b, of which effectively suppressing lipopolysaccharide (LPS)‐induced inflammatory response in macrophages. This study aimed to investigate the potential protective effect of 6b on DCM and underlying mechanism. In H9c2 myocardial cells, 6b potently decreased high glucose (HG)‐induced cell fibrosis, hypertrophy and apoptosis, alleviating inflammatory response and oxidant stress. In STZ‐induced type 1 diabetic mice (STZ‐DM1), orally administration with 6b for 16 weeks significantly attenuated cardiac hypertrophy, apoptosis and fibrosis. The expression of inflammatory cytokines and oxidative stress biomarkers was also suppressed by 6b distinctly, without affecting blood glucose and body weight. The anti‐inflammatory and antioxidative activities of 6b were mechanistic associated with nuclear factor‐kappa B (NF‐κB) nucleus entry blockage and Nrf2 activation both in vitro and in vivo. The results indicated that 6b can be a promising cardioprotective agent in treatment of DCM via inhibiting inflammation and alleviating oxidative stress. This study also validated the important role of NF‐κB and Nrf2 taken in the pathogenesis of DCM, which could be therapeutic targets for diabetic comorbidities.  相似文献   

14.
15.
Myocardial infarction (MI) is an acute coronary syndrome that refers to tissue infarction of the myocardium. This study aimed to investigate the effect of long intergenic non‐protein‐coding RNA (lincRNA) ATPase plasma membrane Ca2+ transporting 1 antisense RNA 1 (ATP2B1‐AS1) against MI by targeting nuclear factor‐kappa‐B inhibitor alpha (NFKBIA) and mediating the nuclear factor‐kappa‐B (NF‐κB) signalling pathway. An MI mouse model was established and idenepsied by cardiac function evaluation. It was determined that ATP2B1‐AS1 was highly expressed, while NFKBIA was poorly expressed and NF‐κB signalling pathway was activated in MI mice. Cardiomyocytes were extracted from mice and introduced with a series of mouse ATP2B1‐AS1 vector, NFKBIA vector, siRNA‐mouse ATP2B1‐AS1 and siRNA‐NFKBIA. The expression of NF‐κBp50, NF‐κBp65 and IKKβ was determined to idenepsy whether ATP2B1‐AS1 and NFKBIA affect the NF‐κB signalling pathway, the results of which suggested that ATP2B1‐AS1 down‐regulated the expression of NFKBIA and activated the NF‐κB signalling pathway in MI mice. Based on the data from assessment of cell viability, cell cycle, apoptosis and levels of inflammatory cytokines, either silencing of mouse ATP2B1‐AS1 or overexpression of NFKBIA was suggested to result in reduced cardiomyocyte apoptosis and expression of inflammatory cytokines, as well as enhanced cardiomyocyte viability. Our study provided evidence that mouse ATP2B1‐AS1 silencing may have the potency to protect against MI in mice through inhibiting cardiomyocyte apoptosis and inflammation, highlighting a great promise as a novel therapeutic target for MI.  相似文献   

16.
Cutaneous and ocular injuries caused by sulfur mustard (SM; bis‐(2‐chloroethyl) sulfide) are characterized by severe inflammation and death of exposed cells. Given the known roles of p38MAPK and NF‐κB in inflammatory cytokine production, and the known roles of NF‐κB and p53 in cell fate, these pathways are of particular interest in the study of SM injury. In this study, we utilized inhibitory RNA (RNAi) targeted against p38α, the p50 subunit of NF‐κB, or p53 to characterize their role in SM‐induced inflammation and cell death in normal human epidermal keratinocytes (NHEK). Analysis of culture supernatant from 200 μM SM‐exposed cells showed that inflammatory cytokine production was inhibited by p38α RNAi but not by NF‐κB p50 RNAi. These findings further support a critical role for p38 in SM‐induced inflammatory cytokine production in NHEK and suggest that NF‐κB may not play a role in the SM‐induced inflammatory response of this cell type. Inhibition of NF‐κB by p50 RNAi did, however, partially inhibit SM‐induced cell death, suggesting a role for NF‐κB in SM‐induced apoptosis or necrosis. Interestingly, inhibition of p53 by RNAi potentiated SM‐induced cell death, suggesting that the role of p53 in SM injury, may be complex and not simply prodeath. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:155–164, 2010; Published online inWiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20321  相似文献   

17.
18.
Hyperglycemia impairs glucagon‐like peptide‐1 receptor (GLP‐1R) signaling in multiple cell types and thereby potentially attenuates the therapeutic effects of GLP‐1R agonists. We hypothesized that the downregulation of GLP‐1R by hyperglycemia might reduce the renal‐protective effects of GLP‐1R agonists in diabetic nephropathy (DN). In this study, we examined the effects of high glucose on the expression of GLP‐1R and its signaling pathways in the HBZY‐1 rat mesangial cell line. We found that high glucose reduced GLP‐1R messenger RNA (mRNA) levels in HBZY‐1 cells and in the renal cortex in db/db mice comparing with control groups. In consistence, GLP‐1R agonist exendin‐4 induced CREB phosphorylation was attenuated by high glucose but not low glucose treatment, which is paralleled with abrogated anti‐inflammatory functions in HBZY‐1 cells linked with nuclear factor‐κB (NF‐κB) activation. In consistence, GLP‐1R inhibition aggravated the high glucose‐induced activation of NF‐κB and MCP‐1 protein levels in cultured HBZY‐1 cells while overexpression of GLP‐1R opposite effects. We further proved that metformin restored high glucose‐inhibited GLP‐1R mRNA expression and decreased high glucose evoked inflammation in HBZY‐1 cells. On the basis of these findings, we conclude that high glucose lowers GLP‐1R expression and leads to inflammatory responses in mesangial cells, which can be reversed by metformin. These data support the rationale of combinative therapy of metformin with GLP‐1R agonists in DN.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号