首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid zones, where two divergent taxa meet and interbreed, offer unique opportunities to investigate how climate contributes to reproductive isolation between closely related taxa and how these taxa may respond to climatic changes. Red‐naped (Sphyrapicus nuchalis) and Red‐breasted (Sphyrapicus ruber) sapsuckers (Aves: Picidae) hybridize along a narrow contact zone that stretches from northern California to British Columbia. The hybrid zone between these species has been studied extensively for more than 100 years and represents an excellent system for investigations of the evolution of reproductive isolation. Shifts in the proportions of phenotypes at hybrid localities since 1910 that were inferred using specimens from museum collections were confirmed using species distribution models. We predicted the historical, current, and future distributions of parental and hybrid sapsuckers using Random Forests models to quantify how climate change is affecting hybrid zone movement in the Pacific Northwest. We found observed distribution shifts of parental sapsuckers were likely the result of climate change over the past 100 years, with these shifts predicted to continue for both sapsuckers over the next 80 years. We found Red‐breasted Sapsuckers are predicted to continue to expand, while Red‐naped Sapsuckers are predicted to contract substantially under future climate scenarios. As a result of the predicted changes, the amount of overlap in the distribution of these sapsuckers may decrease. Using hybrid phenotypes, we found the climate niche occupied by the hybrid zone is predicted to disappear under future conditions. The disappearance of this climate niche where the two parental species come into contact and hybridize may lead to a substantial reduction in genetic introgression. Understanding the impacts of global climate change on hybrid zones may help us to better understand how speciation has been shaped by climate in the past, as well as how evolution may respond to climate change in the future.  相似文献   

2.
Hybridization has presented a challenge for taxonomists and conservation biologists, since hybridizing forms could be stable evolutionary entities or ephemeral forms that are blending together. However, hybrid zones also provide a unique opportunity for evolutionary biologists who study the interaction between gene flow and reproductive isolation in speciation. Three forms of woodpeckers (sapsuckers; genus Sphyrapicus) in North America that are mostly geographically separated but hybridize with each other where they come into contact present a remarkable system for the study of hybridization. We provide the first comprehensive analysis of phenotypic and genetic variation across a hybrid zone between two of these forms, the red‐breasted Sphyrapicus ruber and yellow‐bellied S. varius sapsuckers. The objective was to infer whether selection maintains the differences between forms. Our analysis of eight morphometric and 20 plumage traits, and two molecular markers showed clear differences between the forms and roughly concordant clinal variation across a narrow hybrid zone. Thirty percent of sampled birds in the hybrid zone had mixed west/east genotypes at the genetic markers examined. The center of the genetic cline was located 20 km west of the crest of the Rocky Mountains. The width of the zone was 122 km, narrower than would be expected under neutral blending given reasonable estimates of the age of the zone and individual dispersal distances. Heterozygote deficit and cytonuclear disequilibrium at the centre of the hybrid zone suggested nonrandom mating or limited hybridization. Given these patterns and lack of evidence for habitat segregation we conclude that this hybrid zone is maintained by selection, most likely in the form of hybrid inferiority. This study provides an illustrative example of extensive hybridization between stable entities, providing additional evidence against the historical practice of treating hybridizing forms as members of the same species.  相似文献   

3.
Genetic and phenotypic mosaics, in which various phenotypes and different genomic regions show discordant patterns of species or population divergence, offer unique opportunities to study the role of ancestral and introgressed genetic variation in phenotypic evolution. Here, we investigated the evolution of discordant phenotypic and genetic divergence in a monophyletic clade of four songbird taxa—pied wheatear (O. pleschanka), Cyprus wheatear (Oenanthe cypriaca), and western and eastern subspecies of black‐eared wheatear (O. h. hispanica and O. h. melanoleuca). Phenotypically, black back and neck sides distinguish pied and Cyprus wheatears from the white‐backed/necked black‐eared wheatears. Meanwhile, mitochondrial variation only distinguishes western black‐eared wheatear. In the absence of nuclear genetic data, and given frequent hybridization among eastern black‐eared and pied wheatear, it remains unclear whether introgression is responsible for discordance between mitochondrial divergence patterns and phenotypic similarities, or whether plumage coloration evolved in parallel. Multispecies coalescent analyses of about 20,000 SNPs obtained from RAD data mapped to a draft genome assembly resolve the species tree, provide evidence for the parallel evolution of colour phenotypes and establish western and eastern black‐eared wheatears as independent taxa that should be recognized as full species. The presence of the entire admixture spectrum in the Iranian hybrid zone and the detection of footprints of introgression from pied into eastern black‐eared wheatear beyond the hybrid zone despite strong geographic structure of ancestry proportions furthermore suggest a potential role for introgression in parallel plumage colour evolution. Our results support the importance of standing heterospecific and/or ancestral variation in phenotypic evolution.  相似文献   

4.
Hybrid zones allow the measurement of gene flow across the genome, producing insight into the genomic architecture of speciation. Such analysis is particularly powerful when applied to multiple pairs of hybridizing species, as patterns of genomic differentiation can then be related to age of the hybridizing species, providing a view into the build‐up of differentiation over time. We examined 33 809 single nucleotide polymorphisms (SNPs) in three hybridizing woodpecker species: Red‐breasted, Red‐naped and Yellow‐bellied sapsuckers (Sphyrapicus ruber, Sphyrapicus nuchalis and Sphyrapicus varius), two of which (ruber and nuchalis) are much more closely related than each is to the third (varius). To identify positions of SNPs on chromosomes, we developed a localization method based on comparative genomics. We found narrow clines, bimodal distributions of hybrid indices and genomic regions with decreased rates of introgression. These results suggest moderately strong reproductive isolation among species and selection against specific hybrid genotypes. We found 19 small regions of strong differentiation between species, partly shared among species pairs, but no large regions of differentiation. An association analysis revealed a single strong‐effect candidate locus associated with plumage, possibly explaining mismatch among the three species in genomic relatedness and plumage similarity. Our comparative analysis of species pairs of different age and their hybrid zones showed that moderately strong reproductive isolation can occur with little genomic differentiation, but that reproductive isolation is incomplete even with much greater genomic differentiation, implying there are long periods of time when hybridization is possible if diverging populations are in geographic contact.  相似文献   

5.
Three species of closely related woodpeckers (sapsuckers; Sphyrapicus) hybridize where they come into contact, presenting a rare ‘λ‐shape’ meeting of hybrid zones. Two of the three arms of this hybrid zone are located on either side of the Interior Plateau of British Columbia, Canada bordering the foothills of the Coast Mountains and the Rocky Mountains. The third arm is located in the eastern foothills of the Rocky Mountains. The zones of hybridization present high variability of phenotypes and alleles in relatively small areas and provide an opportunity to examine levels of reproductive isolation between the taxa involved. We examined phenotypes (morphometric traits and plumage) and genotypes of 175 live birds across the two hybrid zones. We used the Genotyping By Sequencing (GBS) method to identify 180 partially diagnostic single nucleotide polymorphisms (SNPs) to generate a genetic hybrid index (GHI) for each bird. Phenotypically diverged S. ruber and S. nuchalis are genetically closely related, while S. nuchalis and S. varius have similar plumage but are well separated at the genetic markers studied. The width of both hybrid zones is narrower than expected under neutrality, and analyses of both genotypes and phenotypes indicate that hybrids are rare in the hybrid zone. Rarity of hybrids indicates assortative mating and/or some form of fitness reduction in hybrids, which might maintain the species complex despite close genetic distance and introgression. These findings further support the treatment of the three taxa as distinct species.  相似文献   

6.
A hybrid zone along an environmental gradient should contain a clinal pattern of genetic and phenotypic variation. This occurs because divergent selection in the two parental habitats is typically strong enough to overcome the homogenizing effects of gene flow across the environmental transition. We studied hybridization between two parapatric tree squirrels (Tamiasciurus spp.) across a forest gradient over which the two species vary in coloration, cranial morphology and body size. We sampled 397 individuals at 29 locations across a 600‐km transect to seek genetic evidence for hybridization; upon confirming hybridization, we examined levels of genetic admixture in relation to maintenance of phenotypic divergence despite potentially homogenizing gene flow. Applying population assignment analyses to microsatellite data, we found that Tamiasciurus douglasii and T. hudsonicus form two distinct genetic clusters but also hybridize, mostly within transitional forest habitat. Overall, based on this nuclear analysis, 48% of the specimens were characterized as T. douglasii, 9% as hybrids and 43% as T. hudsonicus. Hybrids appeared to be reproductively viable, as evidenced by the presence of later‐generation hybrid genotypes. Observed clines in ecologically important phenotypic traits—fur coloration and cranial morphology—were sharper than the cline of putatively neutral mtDNA, which suggests that divergent selection may maintain phenotypic distinctiveness. The relatively recent divergence of these two species (probably late Pleistocene), apparent lack of prezygotic isolating mechanisms and geographic coincidence of cline centres for both genetic and phenotypic variation suggest that environmental factors play a large role in maintaining the distinctiveness of these two species across the hybrid zone.  相似文献   

7.
Patterns of phenotypic and genic frequencies across hybrid zones provide insight into the origin and evolution of reproductive isolation. The Reunion grey white‐eye, Zosterops borbonicus, exhibits parapatrically distributed plumage colour forms across the lowlands of the small volcanic island of Reunion (Mascarene archipelago). These forms meet and hybridize in regions that are natural barriers to dispersal (rivers, lava fields). Here, we investigated the relationship among patterns of differentiation at neutral genetic (microsatellite) markers, phenotypic traits (morphology and plumage colour) and niche characteristics across three independent hybrid zones. Patterns of phenotypic divergence revealed that these hybrid zones are among the narrowest ever documented in birds. However, the levels of phenotypic divergence stand in stark contrast to the lack of clear population neutral genetic structure between forms. The position of the hybrid zones coincides with different natural physical barriers, yet is not associated with steep changes in vegetation and related climatic variables, and major habitat transitions are shifted from these locations by at least 18 km. This suggests that the hybrid zones are stabilized over natural dispersal barriers, independently of environmental boundaries, and are not associated with niche divergence. A striking feature of these hybrid zones is the very low levels of genetic differentiation in neutral markers between forms, suggesting that phenotypic divergence has a narrow genetic basis and may reflect recent divergence at a few linked genes under strong selection, with a possible role for assortative mating in keeping these forms apart.  相似文献   

8.
Hybrid zones are geographic regions where differentiated taxa meet and potentially exchange genes. Increasingly, genomic analyses have demonstrated that many hybrid zones are semipermeable boundaries across which introgression is highly variable. In some cases, certain alleles penetrate across the hybrid zone in only one direction, recombining into the alternate genome. We investigated this phenomenon using genomic (genotyping‐by‐sequencing) and morphological (plumage reflectance spectrophotometry) analyses of the hybrid zone between two subspecies of the red‐backed fairy‐wren (Malurus melanocephalus) that differ conspicuously in a sexual signal, male back plumage color. Geographic cline analyses revealed a highly variable pattern of differential introgression, with many narrow coincident clines combined with several significantly wider clines, suggesting that the hybrid zone is a semipermeable tension zone. The plumage cline was shifted significantly into the genomic background of the orange subspecies, consistent with sexual selection driving asymmetrical introgression of red plumage alleles across the hybrid zone. This interpretation is supported by previous experimental work demonstrating an extra‐pair mating advantage for red males, but the role of genetic dominance in driving this pattern remains unclear. This study highlights the potential for sexual selection to erode taxonomic boundaries and promote gene flow, particularly at an intermediate stage of divergence.  相似文献   

9.
Homoploid hybrid speciation is thought to require unusual circumstances to yield reproductive isolation from the parental species, and few examples are known from nature. Here, we present genetic evidence for this mode of speciation in birds. Using Bayesian assignment analyses of 751 individuals genotyped for 14 unlinked, nuclear microsatellite loci, we show that the phenotypically intermediate Italian sparrow (Passer italiae) does not form a cluster of its own, but instead exhibits clear admixture (over its entire breeding range) between its putative parental species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). Further, the Italian sparrow possesses mitochondrial (mt) DNA haplotypes identical to both putative parental species (although mostly of house sparrow type), indicating a recent hybrid origin. Today, the Italian sparrow has a largely allopatric distribution on the Italian peninsula and some Mediterranean islands separated from its suggested parental species by the Alps and the Mediterranean Sea, but co‐occurs with the Spanish sparrow on the Gargano peninsula in southeast Italy. No evidence of interbreeding was found in this sympatric population. However, the Italian sparrow hybridizes with the house sparrow in a sparsely populated contact zone in the Alps. Yet, the contact zone is characterized by steep clines in species‐specific male plumage traits, suggesting that partial reproductive isolation may also have developed between these two taxa. Thus, geographic and reproductive barriers restrict gene flow into the nascent hybrid species. We propose that an origin of hybrid species where the hybrid lineage gets geographically isolated from its parental species, as seems to have happened in this system, might be more common in nature than previously assumed.  相似文献   

10.
Abstract A previous study of the hybrid zone in western Panama between white‐collared (Manacus candei) and golden‐collared manakins (M. vitellinus) documented the unidirectional introgression of vitellinus male secondary sexual traits across the zone. Here, we examine the hybrid zone in greater genetic and morphological detail. Statistical comparisons of clines are performed using maximum‐likelihood and nonparametric bootstrap methods. Our results demonstrate that an array of six molecular and two morphometric markers agree in cline position and width. Clines for male collar and belly color are similar in width to the first eight clines, but are shifted in position by at least five cline widths. The result is that birds in intervening populations are genetically and morphometrically very like parental candei, but males have the plumage color of parental vitellinus. Neither neutral diffusion nor nonlinearity of color scales appear to be viable explanations for the large cline shifts. Genetic dominance of vitellinus plumage traits is another potential explanation that will require breeding experiments to test. Sexual selection remains a plausible explanation for the observed introgression of vitellinus color traits in these highly dimorphic, polygynous, lek‐mating birds. Two other clines, including a nondiagnostic isozyme locus, are similar in position to the main cluster of clines, but are broader in width. Thus, introgression at some loci is greater than that detected with diagnostic markers. Assuming that narrow clines are maintained by selection, variation in cline width indicates that selection is not uniform throughout the genome and that diagnostic markers are under more intense selective pressure. The traditional focus on diagnostic markers in studies of hybrid zones may therefore lead to underestimates of average introgression. This effect may be more pronounced in organisms with low levels of genetic divergence between hybridizing taxa.  相似文献   

11.
Geographically clustered phenotypes often demonstrate consistent patterns in molecular markers, particularly mitochondrial DNA (mtDNA) traditionally used in phylogeographic studies. However, distinct evolutionary trajectories among traits and markers can lead to their discordance. First, geographic structure in phenotypic traits and nuclear molecular markers can be co‐aligned but inconsistent with mtDNA (mito‐nuclear discordance). Alternatively, phenotypic variation can have little to do with patterns in neither mtDNA nor nuclear markers. Disentangling between these distinct patterns can provide insight into the role of selection, demography and gene flow in population divergence. Here, we examined a previously reported case of strong inconsistency between geographic structure in mtDNA and plumage traits in a widespread polytypic bird species, the White Wagtail (Motacilla alba). We tested whether this pattern is due to mito‐nuclear discordance or discrepancy between morphological evolution and both nuclear and mtDNA markers. We analysed population differentiation and structure across six out of nine commonly recognized subspecies using 17 microsatellite loci and a combination of microsatellites and plumage indices in a comprehensively sampled region of a contact between two subspecies. We did not find support for the mito‐nuclear discordance hypothesis: nuclear markers indicated a subtle signal of genetic clustering only partially consistent with plumage groups, similar to previous findings that relied on mtDNA. We discuss evolutionary factors that could have shaped the intricate patterns of phenotypic diversification in the White wagtail and the role that repeated selection on plumage ‘hotspots’ and hybridization may have played.  相似文献   

12.
Hybrid zones between divergent populations sieve genomes into blocks that introgress across the zone, and blocks that do not, depending on selection between interacting genes. Consistent with Haldane's rule, the Y chromosome has been considered counterselected and hence not to introgress across the European house mouse hybrid zone. However, recent studies detected massive invasion of M. m. musculus Y chromosomes into M. m. domesticus territory. To understand mechanisms facilitating Y spread, we created 31 recombinant lines from eight wild‐derived strains representing four localities within the two mouse subspecies. These lines were reciprocally crossed and resulting F1 hybrid males scored for five phenotypic traits associated with male fitness. Molecular analyses of 51 Y‐linked SNPs attributed ~50% of genetic variation to differences between the subspecies and 8% to differentiation within both taxa. A striking proportion, 21% (frequencies of sperm head abnormalities) and 42% (frequencies of sperm tail dissociations), of phenotypic variation was explained by geographic Y chromosome variants. Our crossing design allowed this explanatory power to be examined across a hierarchical scale from subspecific to local intrastrain effects. We found that divergence and variation were expressed diversely in different phenotypic traits and varied across the whole hierarchical scale. This finding adds another dimension of complexity to studies of Y introgression not only across the house mouse hybrid zone but potentially also in other contact zones.  相似文献   

13.
14.
The study of natural hybrid zones can illuminate aspects of lineage divergence and speciation in morphologically cryptic taxa. We studied a hybrid zone between two highly divergent but morphologically similar lineages (south‐western and south‐eastern) of the Iberian endemic Bosca's newt (Lissotriton boscai) in SW Iberia with a multilocus dataset (microsatellites, nuclear and mitochondrial genes). STRUCTURE and NEWHYBRIDS analyses retrieved few admixed individuals, which classified as backcrosses involving parental individuals of the south‐western lineage. Our results show asymmetric introgression of mtDNA beyond the contact from this lineage into the south‐eastern lineage. Analysis of nongeographic introgression patterns revealed asymmetries in the direction of introgression, but except for mtDNA, we did not find evidence for nonconcordant introgression patterns across nuclear loci. Analysis of a 150‐km transect across the hybrid zone showed broadly coincident cline widths (ca. 3.2–27.9 km), and concordant cline centres across all markers, except for mtDNA that is displaced ca. 60 km northward. Results from ecological niche modelling show that the hybrid zone is in a climatically homogenous area with suitable habitat for the species, suggesting that contact between the two lineages is unlikely to occur further south as their distributions are currently separated by an extensive area of unfavourable habitat. Taken together, our findings suggest the genetic structure of this hybrid zone results from the interplay of historical (biogeographic) and population‐level processes. The narrowness and coincidence of genetic clines can be explained by weak selection against hybrids and reflect a degree of reproductive isolation that is consistent with cryptic speciation.  相似文献   

15.
The tropical Andes are a global hotspot of avian diversity that is characterized by dramatic elevational shifts in community composition and a preponderance of recently evolved species. Bird habitats in the Andes span a nearly twofold range of atmospheric pressure that poses challenges for respiration, thermoregulation, water balance and powered flight, but the extent to which physiological constraints limit species' elevational distributions is poorly understood. We report a previously unknown hybrid zone between recently diverged flycatchers (Aves, Tyrannidae) with partially overlapping elevational ranges. The southern Anairetes reguloides has a broad elevational range (0–4200 m), while the northern Anairetes nigrocristatus is restricted to high elevations (>2200 m). We found hybrids in central Peru at elevations between ~3100 and 3800 m, with A. nigrocristatus above this elevation and A. reguloides below. We analysed variation in haematology, heart mass, morphometrics, plumage and one mitochondrial and three nuclear loci across an elevational transect that encompasses the hybrid zone. Phenotypic traits and genetic markers all showed steep clines across the hybrid zone. Haemoglobin concentration, haematocrit, mean cellular haemoglobin concentration and relative heart mass each increased at altitude more strongly in A. reguloides than in A. nigrocristatus. These findings suggest that A. nigrocristatus is more resistant than A. reguloides to high‐altitude hypoxic respiratory stress. Considering that the ancestor of the genus is suggested to have been restricted to high elevations, A. reguloides may be secondarily adapted to low altitude. We conclude that differential respiratory specialization on atmospheric pressure combined with competitive exclusion maintains replacement along an elevational contour, despite interbreeding.  相似文献   

16.
Hybrid zones are particularly valuable for understanding the evolution of partial reproductive isolation between differentiated populations. An increasing number of hybrid zones have been inferred to move over time, but in most such cases zone movement has not been tested with long‐term genomic data. The hybrid zone between Townsend's Warblers (Setophaga townsendi) and Hermit Warblers (S. occidentalis) in the Washington Cascades was previously inferred to be moving from northern S. townsendi southwards towards S. occidentalis, based on plumage and behavioural patterns as well as a 2000‐km genetic wake of hermit mitochondrial DNA (mtDNA) in coastal Townsend's Warblers. We directly tested whether hybrid zone position has changed over 2–3 decades by tracking plumage, mtDNA and nuclear genomic variation across the hybrid zone over two sampling periods (1987–94 and 2015–16). Surprisingly, there was no significant movement in genomic or plumage cline centres between the two time periods. Plumage cline widths were narrower than expected by neutral diffusion, consistent with a ‘tension zone’ model, in which selection against hybrids is balanced by movement of parental forms into the zone. Our results indicate that this hybrid zone is either stable in its location or moving at a rate that is not detectable over 2–3 decades. Despite considerable gene flow, the stable clines in multiple phenotypic and genotypic characters over decades suggest evolutionary stability of this young pair of sister species, allowing divergence to continue. We propose a novel biogeographic scenario to explain these patterns: rather than the hybrid zone having moved thousands of kilometres to its current position, inland Townsend's met coastal Hermit Warbler populations along a broad front of the British Columbia and Alaska coast and hybridization led to replacement of the Hermit Warbler plumage with Townsend's Warbler plumage patterns along this coastline. Hence, hybrid zones along British Columbia and Alaska moved only a short distance from the inland to the coast, whereas the Hermit Warbler phenotype appears stable in Washington and further south. This case provides an example of the complex biogeographic processes that have led to the distribution of current phenotypes within and among closely related species.  相似文献   

17.
The genetic composition of a hybrid zone can provide insight into the evolution of diversification in plants. We carried out morphological and amplified fragment length polymorphism analyses to investigate the genetic composition of a hybrid zone between two violets, Viola bissetii Hemsl. and Viola rossii Maxim. Our aim was to clarify the formation and maintenance of hybrids between these Viola species. We found that most hybrid individuals (V. bissetii × V. rossii) were of the F1 generation, with a few of the F2 generation. We found no backcrosses. The scarcity of post‐F1 hybrids indicates that a species barrier is established between the parental species. The F1‐dominated hybrid zone occupied only a narrow, intermediate ecotone between the parental habitats, suggesting that selection by environmental factors against hybrids may help to maintain the current conditions in this hybrid zone.  相似文献   

18.
Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole‐genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region—the previously described subspecies (“fulvescens”) from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.  相似文献   

19.
20.
Two grasshopper species Stenobothrus rubicundus and S. clavatus were previously shown to meet in a narrow hybrid zone on Mount Tomaros in northern Greece. The species are remarkable for their complex courtship songs accompanied by conspicuous movements of antennae and wings. We analyzed variations in forewing morphology, antenna shape, and courtship song across the hybrid zone using a geographic information system, and we documented three contact zones on Mount Tomaros. All male traits and female wings show abrupt transitions across the contact zones, suggesting that these traits are driven by selection rather than by drift. Male clines in antennae are displaced toward S. clavatus, whereas all clines in wings are displaced toward S. rubicundus. We explain cline discordance as depending on sexual selection via female choice. The high covariance between wings and antennae found in the centers of all contact zones results from high levels of linkage disequilibria among the underlying loci, which in turn more likely results from assortative mating than from selection against hybrids. The covariance is found to be higher in clavatus‐like than rubicundus‐like populations, which implies asymmetric assortative mating in parental‐like sites of the hybrid zone and a movement of the hybrid zone in favor of S. clavatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号