首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal tolerance is an important factor influencing the distribution of ectotherms, but our understanding of the ability of species to evolve different thermal limits is limited. Based on univariate measures of adaptive capacity, it has recently been suggested that species may have limited evolutionary potential to extend their upper thermal limits under ramping temperature conditions that better reflect heat stress in nature. To test these findings more broadly, we used a paternal half‐sibling breeding design to estimate the multivariate evolutionary potential for upper thermal limits in Drosophila simulans. We assessed heat tolerance using static (basal and hardened) and ramping assays. Our analyses revealed significant evolutionary potential for all three measures of heat tolerance. Additive genetic variances were significantly different from zero for all three traits. Our G matrix analysis revealed that all three traits would contribute to a response to selection for increased heat tolerance. Significant additive genetic covariances and additive genetic correlations between static basal and hardened heat‐knockdown time, marginally nonsignificant between static basal and ramping heat‐knockdown time, indicate that direct and correlated responses to selection for increased upper thermal limits are possible. Thus, combinations of all three traits will contribute to the evolution of upper thermal limits in response to selection imposed by a warming climate. Reliance on univariate estimates of evolutionary potential may not provide accurate insight into the ability of organisms to evolve upper thermal limits in nature.  相似文献   

2.
The climate is warming at an unprecedented rate, pushing many species toward and beyond the upper temperatures at which they can survive. Global change is also leading to dramatic shifts in the distribution of pathogens. As a result, upper thermal limits and susceptibility to infection should be key determinants of whether populations continue to persist, or instead go extinct. Within a population, however, individuals vary in both their resistance to both heat stress and infection, and their contributions to vital growth rates. No more so is this true than for males and females. Each sex often varies in their response to pathogen exposure, thermal tolerances, and particularly their influence on population growth, owing to the higher parental investment that females typically make in their offspring. To date, the interplay between host sex, infection, and upper thermal limits has been neglected. Here, we explore the response of male and female Daphnia to bacterial infection and static heat stress. We find that female Daphnia, when uninfected, are much more resistant to static heat stress than males, but that infection negates any advantage that females are afforded. We discuss how the capacity of a population to cope with multiple stressors may be underestimated unless both sexes are considered simultaneously.  相似文献   

3.
Natural populations are experiencing an increase in the occurrence of both thermal stress and disease outbreaks. How these two common stressors interact to determine host phenotypic shifts will be important for population persistence, yet a myriad of different traits and pathways are a target of both stressors, making generalizable predictions difficult to obtain. Here, using the host Daphnia magna and its bacterial pathogen Pasteuria ramosa, we tested how temperature and pathogen exposure interact to drive shifts in multivariate host phenotypes. We found that these two stressors acted mostly independently to shape host phenotypic trajectories, with temperature driving a faster pace of life by favouring early development and increased intrinsic population growth rates, while pathogen exposure impacted reproductive potential through reductions in lifetime fecundity. Studies focussed on extreme thermal stress are increasingly showing how pathogen exposure can severely hamper the thermal tolerance of a host. However, our results suggest that under milder thermal stress, and in terms of life-history traits, increases in temperature might not exacerbate the impact of pathogen exposure on host performance, and vice versa.  相似文献   

4.
The present study examines life stage‐related variation in the thermal limits to activity and survival in an African pest, the false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Thermal tolerance, including the functional activity limits of critical thermal maxima and minima (CTmax and CTmin respectively), upper and lower lethal temperature, and the effect of heat and cold hardening (short‐term acute plasticity), is measured across a diverse range of low or high temperature stress conditions in both larvae and adults. We also report the sum of inducible and cognate forms of the amounts of heat shock protein 70 (HSP70) as an explanatory variable for changes in thermotolerance. The results show that the larvae have high variability in CTmax and CTmin at different ramping rates and low levels of basal (innate) thermal tolerance. By contrast, the adults show high basal tolerance and overall lower variability in CTmax and CTmin, indicating lower levels of phenotypic plasticity in thermotolerance. HSP70 responses, although variable, do not reflect these tolerance or survival patterns. Larvae survive across a broader range of temperatures, whereas adults remain active across a broader range of temperatures. Life stage‐related variation in thermal tolerance is most pronounced under the slowest (most ecologically‐relevant) ramping rate (0.06 °C min–1) during lower critical thermal limit experiments and least pronounced during upper thermal limit experiments. Thus, the ramping rate can hinder or enhance the detection of stage‐related variation in thermal limits to activity and survival of insects.  相似文献   

5.
Thermal sensitivity is a crucial determinant of insect abundance and distribution. The way it is measured can have a critical influence on the conclusions made. Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important insect pest of cruciferous crops around the world and the thermal responses of polyphagous species are critical to understand the influences of a rapidly changing climate on their distribution and abundance. Experiments were carried out to the lethal temperature limits (ULT0 and LLT0: temperatures where there is no survival) as well as Upper and Lower Lethal Temperature (ULT25 and LLT25) (temperature where 25% DBM survived) of lab-reared adult DBM population to extreme temperatures attained by either two-way ramping (ramping temperatures from baseline to LT25 and ramping back again) or sudden plunging method. In this study the ULT0 for DBM was recorded as 42.6°C and LLT0 was recorded as −16.5°C. DBM had an ULT25 of 41.8°C and LLT25 of −15.2°C. The duration of exposure to extreme temperatures had significant impacts on survival of DBM, with extreme temperatures and/or longer durations contributing to higher lethality. Comparing the two-way ramping temperature treatment to that of direct plunging temperature treatment, our study clearly demonstrated that DBM was more tolerant to temperature in the two-way ramping assay than that of the plunging assay for cold temperatures, but at warmer temperatures survival exhibited no differences between ramping and plunging. These results suggest that DBM will not be put under physiological stress from a rapidly changing climate, rather access to host plants in marginal habitats has enabled them to expand their distribution. Two-way temperature ramping enhances survival of DBM at cold temperatures, and this needs to be examined across a range of taxa and life stages to determine if enhanced survival is widespread incorporating a ramping recovery method.  相似文献   

6.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

7.
Thermal acclimation capacity, the degree to which organisms can alter their optimal performance temperature and critical thermal limits with changing temperatures, reflects their ability to respond to temperature variability and thus might be important for coping with global climate change. Here, we combine simulation modelling with analysis of published data on thermal acclimation and breadth (range of temperatures over which organisms perform well) to develop a framework for predicting thermal plasticity across taxa, latitudes, body sizes, traits, habitats and methodological factors. Our synthesis includes > 2000 measures of acclimation capacities from > 500 species of ectotherms spanning fungi, invertebrates, and vertebrates from freshwater, marine and terrestrial habitats. We find that body size, latitude, and methodological factors often interact to shape acclimation responses and that acclimation rate scales negatively with body size, contributing to a general negative association between body size and thermal breadth across species. Additionally, we reveal that acclimation capacity increases with body size, increases with latitude (to mid‐latitudinal zones) and seasonality for smaller but not larger organisms, decreases with thermal safety margin (upper lethal temperature minus maximum environmental temperatures), and is regularly underestimated because of experimental artefacts. We then demonstrate that our framework can predict the contribution of acclimation plasticity to the IUCN threat status of amphibians globally, suggesting that phenotypic plasticity is already buffering some species from climate change.  相似文献   

8.
To maximize fitness upon pathogenic infection, host organisms might reallocate energy and resources among life‐history traits, such as reproduction and defense. The fitness costs of infection can result from both immune upregulation and direct pathogen exploitation. The extent to which these costs, separately and together, vary by host genotype and across generations is unknown. We attempted to disentangle these costs by transiently exposing wild isolates and a lab‐domesticated strain of Caenorhabditis elegans nematodes to the pathogen Staphylococcus aureus, using exposure to heat‐killed pathogens to distinguish costs due to immune upregulation and pathogen exploitation. We found that host nematodes exhibit a short‐term delay in offspring production when exposed to live and heat‐killed pathogen, but their lifetime fecundity (total offspring produced) recovered to control levels. We also found genetic variation between host isolates for both cumulative offspring production and magnitude of fitness costs. We further investigated whether there were maternal pathogen exposure costs (or benefits) to offspring and revealed a positive correlation between the magnitude of the pathogen‐induced delay in the parent''s first day of reproduction and the cost to offspring population growth. Our findings highlight the capacity for hosts to recover fecundity after transient exposure to a pathogen.  相似文献   

9.
We examined latitudinal variation in adult and larval heat tolerance in Drosophila melanogaster from eastern Australia. Adults were assessed using static and ramping assays. Basal and hardened static heat knockdown time showed significant linear clines; heat tolerance increased towards the tropics, particularly for hardened flies, suggesting that tropical populations have a greater hardening response. A similar pattern was evident for ramping heat knockdown time at 0.06 °C min?1 increase. There was no cline for ramping heat knockdown temperature (CTmax) at 0.1 °C min?1 increase. Acute (static) heat knockdown temperature increased towards temperate latitudes, probably reflecting a greater capacity of temperate flies to withstand sudden temperature increases during summer in temperate Australia. Larval viability showed a quadratic association with latitude under heat stress. Thus, patterns of heat resistance depend on assay methods. Genetic correlations in thermotolerance across life stages and evolutionary potential for critical thermal limits should be the focus of future studies.  相似文献   

10.
The patterns of immunity conferred by host sex or age represent two sources of host heterogeneity that can potentially shape the evolutionary trajectory of disease. With each host sex or age encountered, a pathogen's optimal exploitative strategy may change, leading to considerable variation in expression of pathogen transmission and virulence. To date, these host characteristics have been studied in the context of host fitness alone, overlooking the effects of host sex and age on the fundamental virulence–transmission trade‐off faced by pathogens. Here, we explicitly address the interaction of these characteristics and find that host sex and age at exposure to a pathogen affect age‐specific patterns of mortality and the balance between pathogen transmission and virulence. When infecting age‐structured male and female Daphnia magna with different genotypes of Pasteuria ramosa, we found that infection increased mortality rates across all age classes for females, whereas mortality only increased in the earliest age class for males. Female hosts allowed a variety of trade‐offs between transmission and virulence to arise with each age and pathogen genotype. In contrast, this variation was dampened in males, with pathogens exhibiting declines in both virulence and transmission with increasing host age. Our results suggest that differences in exploitation potential of males and females to a pathogen can interact with host age to allow different virulence strategies to coexist, and illustrate the potential for these widespread sources of host heterogeneity to direct the evolution of disease in natural populations.  相似文献   

11.
Infectious diseases are a growing threat to biodiversity, in many cases because of synergistic effects with habitat loss, environmental contamination, and climate change. Emergence of pathogens as new threats to host populations can also arise when novel combinations of hosts and pathogens are unintentionally brought together, for example, via commercial trade or wildlife relocations and reintroductions. Chytrid fungus (Batrachochytrium dendrobatidis) and amphibian ranaviruses (family Iridoviridae) are pathogens implicated in global amphibian declines. The emergence of disease associated with these pathogens appears to be at least partly related to recent translocations over large geographic distances. We experimentally examined the outcomes of novel combinations of host populations and pathogen strains using the amphibian ranavirus Ambystoma tigrinum virus (ATV) and barred tiger salamanders (Ambystoma mavortium, formerly considered part of the Ambystoma tigrinum complex). One salamander population was highly resistant to lethal infections by all ATV strains, including its own strain, and mortality rates differed among ATV strains according to salamander population. Mortality rates in novel pairings of salamander population and ATV strain were not predictable based on knowledge of mortality rates when salamander populations were exposed to their own ATV strain. The underlying cause(s) for the differences in mortality rates are unknown, but local selection pressures on salamanders, viruses, or both, across the range of this widespread host–pathogen system are a plausible hypothesis. Our study highlights the need to minimize translocations of amphibian ranaviruses, even among conspecifc host populations, and the importance of considering intraspecific variation in endeavors to manage wildlife diseases.  相似文献   

12.
A trade‐off between a pathogen's ability to infect many hosts and its reproductive capacity on each host genotype is predicted to limit the evolution of an expanded host range, yet few empirical results provide evidence for the magnitude of such trade‐offs. Here, we test the hypothesis for a trade‐off between the number of host genotypes that a fungal pathogen can infect (host genotype range) and its reproductive capacity on susceptible plant hosts. We used strains of the oat crown rust fungus that carried widely varying numbers of virulence (avr) alleles known to determine host genotype range. We quantified total spore production and the expression of four pathogen life‐history stages: infection efficiency, time until reproduction, pustule size, and spore production per pustule. In support of the trade‐off hypothesis, we found that virulence level, the number of avr alleles per pathogen strain, was correlated with significant delays in the onset of reproduction and with smaller pustule sizes. Modeling from our results, we conclude that trade‐offs have the capacity to constrain the evolution of host genotype range in local populations. In contrast, long‐term trends in virulence level suggest that the continued deployment of resistant host lines over wide regions of the United States has generated selection for increased host genotype range.  相似文献   

13.
Anthropogenic climate change is driving the redistribution of species at a global scale. For marine species, populations at trailing edges often live very close to their upper thermal limits and, as such, poleward range contractions are one of the most pervasive effects of ongoing and predicted warming. However, the mechanics of processes driving such contractions are poorly understood. Here, we examined the response of the habitat forming kelp, Laminaria digitata, to realistic terrestrial heatwave simulations akin to those experienced by intertidal populations persisting at the trailing range edge in the northeast Atlantic (SW England). We conducted experiments in both spring and autumn to determine temporal variability in the effects of heatwaves. In spring, heatwave scenarios caused minimal stress to L. digitata but in autumn all scenarios tested resulted in tissue being nonviable by the end of each assay. The effects of heatwave scenarios were only apparent after consecutive exposures, indicating erosion of resilience over time. Monthly field surveys corroborated experimental evidence as the prevalence of bleaching (an indication of physiological stress and tissue damage) in natural populations was greatest in autumn and early winter. Overall, our data showed that L. digitata populations in SW England persist close to their upper physiological limits for emersion stress in autumn. As the intensity of extreme warming events is likely to increase with anthropogenic climate change, thermal conditions experienced during periods of emersion will soon exceed physiological thresholds and will likely induce widespread mortality and consequent changes at the population level.  相似文献   

14.
Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade‐off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming.  相似文献   

15.
1. Human life is sustainable only below an internal temperature of roughly 42–44 °C. Yet our ability to survive at severe environmental extremes is testimony to the marvels of integrative human physiology.

2. One approach to understanding human thermoregulatory capacity is to examine the upper limits of thermal balance between man and the air environment, i.e. the maximal environmental conditions under which humans can maintain a steady-state core temperature. Heat acclimation expands the zone of thermal balance.

3. Human beings can and do, often willingly, tolerate extreme heat stresses well above these thermal balance limits. Survival in all such cases is limited to abbreviated exposure times, which in turn are limited by the robustness of the thermoregulatory response.

4. Figures are provided that relate tolerance time and the rate of change in core temperature to environmental characteristics based on data compiled from the literature.  相似文献   


16.
Many terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioural thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. We further report that embryos live closer to their upper thermal limits than adults – that is, thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting the dominance of heat‐tolerant alleles. Together, our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages to better predict adaptive limits.  相似文献   

17.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused the greatest known wildlife pandemic, infecting over 500 amphibian species. It remains unclear why some host species decline from disease‐related mortality whereas others persist. We introduce a conceptual model that predicts that infection risk in ectotherms will decrease as the difference between host and pathogen environmental tolerances (i.e. tolerance mismatch) increases. We test this prediction using both local‐scale data from Costa Rica and global analyses of over 11 000 Bd infection assays. We find that infection prevalence decreases with increasing thermal tolerance mismatch and with increasing host tolerance of habitat modification. The relationship between environmental tolerance mismatches and Bd infection prevalence is generalisable across multiple amphibian families and spatial scales, and the magnitude of the tolerance mismatch effect depends on environmental context. These findings may help explain patterns of amphibian declines driven by a global wildlife pandemic.  相似文献   

18.
The rust fungus, Puccinia psidii, is a devastating pathogen of introduced eucalypts (Eucalyptus spp.) in Brazil where it was first observed in 1912. This pathogen is hypothesized to be endemic to South and Central America and to have first infected eucalypts via a host jump from native guava (Psidium guajava). Ten microsatellite markers were used to genotype 148 P. psidii samples from eucalypts and guava plus five additional myrtaceous hosts across a wide geographic range of south‐eastern Brazil and Uruguay. Principal coordinates analysis, a Bayesian clustering analysis and a minimum‐spanning network revealed two major genetic clusters among the sampled isolates, one associated with guava and another associated with eucalypts and three additional hosts. Multilocus genotypes infecting guava differed by multiple mutational steps at eight loci compared with those infecting eucalypts. Approximate Bayesian computation revealed that evolutionary scenarios involving a coalescence event between guava‐ and eucalypt‐associated pathogen populations within the past 1000 years are highly unlikely. None of the analyses supported the hypothesis that eucalypt‐infecting P. psidii in Brazil originated via host jump from guava following the introduction of eucalypts to Brazil approximately 185 years ago. The existence of host‐associated biotypes of P. psidii in Brazil indicates that this diversity must be considered when assessing the invasive threat posed by this pathogen to myrtaceous hosts worldwide.  相似文献   

19.
Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen–microbiome–host interactions, which can lead to variation in disease outcome. The skin microbiome of red‐backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti‐Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti‐Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti‐Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd‐resistant species.  相似文献   

20.
Entacmaea quadricolor is a geographically widespread species of sea anemone that forms a three-way symbiosis with anemonefish and Symbiodinium. This species dominates the reef substrata at North Solitary Island, Australia, which is located in a region identified as a climate change hot spot. Their geographic location places these anemones under significant threat from rising ocean temperatures, although their upper thermal limit and risk of bleaching are unknown. To address this knowledge gap, anemones were exposed to one of four temperatures (23, 25, 27, or 29°C) and one of two irradiance treatments (high or low light) over 6 days. At moderate temperatures (27°C, 1°C above summer average), anemone bleaching was characterised by symbiont expulsion, while extreme temperatures (29°C) resulted in an additional loss of photosynthetic pigments from within symbionts, and in some cases, host mortality. Irradiance influenced the susceptibility to thermal stress with high light promoting the bleaching response, along with significant reductions in the effective quantum yield of anemone symbionts. The long-term loss of photosystem II photochemical efficiency within in hospite symbionts was observed during exposure to temperatures exceeding the summer average, indicating photosynthetic damage. The resident Symbiodinium, identified as clade C using 28S rRNA gene sequences, therefore represents the partner within the symbiosis that is likely to be most vulnerable to rising seawater temperatures. Results suggest that E. quadricolor is living within approximately 1°C of the upper thermal maximum at the Solitary Islands, and given the predictions for rising seawater temperature on Australia’s east coast, the thermal threshold at which bleaching will occur is expected to be reached and exceeded more frequently in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号