首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocellular carcinoma (HCC), as the third leading cancer-caused deaths, prevails with high mortality, and affects more than half a million individuals per year worldwide. A former study revealed that microRNA-221 (miR-221) was involved in cell proliferation of liver cancer and HCC development. The current study aims to evaluate whether miR-221 targeting SOCS3 affects HCC through JAK–STAT3 signaling pathway. A series of miR-221 mimic, miR-221 inhibitor, siRNA against SOCS3, and SOCS3 plasmids were introduced to SMMC7721 cells with the highest miR-221 expression assessed. The expression of JAK–STAT3 signaling pathway–related genes and proteins was determined by Western blot analysis. Cell apoptosis, viability, migration, and invasion were evaluated by means of flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide, and transwell assays, respectively. HCC xenograft in nude mice was performed to measure HCC tumor growth. miR-221 was found to be highly expressed but SOCS3 was poorly expressed in HCC tissues. miR-221 expression was correlated with lymph node metastasis (LNM) and tumor node metastasis (TNM) of HCC, and SOCS3 expression was correlated with LNM, differentiation and TNM of HCC. SOCS3 is a target gene of miR-221. MiR-221 mimic or si-SOCS3 exposure was found to induce cell viability, migration, and invasion, and reduce apoptosis. MiR-221 inhibitor was observed to have inhibitory effects on HCC cell proliferation, migration, and invasion. Moreover, the expression of JAK–STAT3 signaling pathway was suppressed by miR-221 inhibitor. Downregulated miR-221 expression could promote its target gene SOCS3 to inhibit the proliferation, invasion and migration of HCC cells by repressing JAK–STAT3 signaling pathway.  相似文献   

2.
Papillary thyroid cancer (PTC) is a kind of thyroid cancer and frequently presents with epithelial–mesenchymal transition (EMT). MicroRNAs (miRNAs) were previously reported to be associated with PTC. Thus, this study aims to define the role of microRNA-520a-3p (miR-520a-3p) in PTC through the JAK/STAT signaling pathway by targeting JAK1. The PTC and normal thyroid tissues of 137 PTC patients were collected. First of all, the expression pattern of miR-520a-3p, JAK1, JAK2, STAT3, E-cadherin, and vimentin in PTC was identified. The relationship between miR-520a-3p and JAK1 was predicted and analyzed. And a series of miR-520a-3p mimic or inhibitor, or siRNA JAK1 introduced into PTC cells were applied to examine the effect of miR-520a-3p on PTC cell viability, migration, invasion, cell cycle, apoptosis, and EMT. Meanwhile, the regulatory effect of miR-520a-3p and JAK1 on the JAK/STAT signaling pathway was also determined. The expression of JAK1, JAK2, STAT3, and vimentin increased yet miR-520a-3p and E-cadherin decreased in PTC tissue. JAK1 was negatively regulated by miR-520a-3p. Functionally, EMT induction was prevented by miR-520a-3p upregulation through downregulating JAK1. When upregulating miR-520a-3p or silencing JAK1 in PTC cells, PTC cell viability, migration, and invasion were inhibited yet cell apoptosis promoted with cells arrested at G1 phase, indicating that miR-520a-3p prevented PTC progression by downregulating JAK1. Moreover, miR-520a-3p elevation or JAK1 inhibition inactivated the JAK/STAT signaling pathway. Collectively, miR-520a-3p prevents cancer progression through inactivating the JAK/STAT signaling pathway by downregulating JAK1 in PTC.  相似文献   

3.
Jagged1, the essential ligand of the Notch signalling pathway, is highly expressed in metastatic prostate cancer, and its high expression in breast cancer is linked to poor survival rates. However, the mechanism of Jagged1′s involvement in platinum‐resistant ovarian cancer has not been thoroughly elucidated to date. The purpose of the present study was to investigate the roles of Jagged1 in the platinum resistance of ovarian cancer and its possible mechanisms. Compared with a platinum responsive group of ovarian epithelial cell carcinomas, we found the positive staining intensity of Notch1, Notch2, Jagged1, STAT3 and Epithelial‐mesenchymal transition (EMT) proteins were lower in a platinum‐resistant group. The DDP‐resistant ovarian cancer cell line (C13K) had a higher IC50 of DDP than its parental cell line (OV2008) (< 0.05) and acquired an EMT phenotype and invasive characteristics. Inhibiting or knockdown of Jagged1 expression could not only reduce its capacity of migration and invasion but also reverse EMT and down‐regulate the expression of serine 727‐phosphorylated STAT3 (pS727) at the protein level but not total STAT3 or tyrosine 705‐phosphorylated STAT3 (pY705) in C13K cells. Furthermore, it was found that crosstalk between the Jagged1/Notch and JAK/STAT3 signalling pathways were involved in Jagged1‐promoting EMT in C13K cells. Experiments in vivo showed a reduced micrometastatic tumour burden in the lung, liver and spleen of mice implanted with C13K cells with knocked‐down Jagged1 compared with mice implanted with control cells. All of these results demonstrate that Jagged1 can crosstalk with the JAK/STAT3 pathway, and they all cooperate to promote the aberrant occurrence of EMT, further reinforcing the abilities of invasion and migration of platinum‐resistant ovarian cancer in vivo and in vitro.  相似文献   

4.
5.
6.
7.
Shikonin is a natural naphthoquinone component with antioxidant and anti‐tumor function and has been used for hepatocellular carcinoma (HCC) treatment. According to the previous study, many herbs can regulate cancer cell progression by targeting specific microRNA (miRNA) (Liu, 2016). However, the underlying pathological mechanism of shikonin in HCC therapy is still unclear. The detection of cell growth and death rate were performed by hemacytometry and trypan blue staining, respectively. The expression of miR‐106b and SMAD7 messenger RNA (mRNA) in HCC cells was evaluated by quantitative real‐time polymerase chain reaction. Cell proliferation, apoptosis, and migration ability were measured by cell counting kit‐8 (CCK‐8), flow cytometry, and transwell assay. The expression of proteins E‐cadherin, N‐cadherin, vimentin, SMAD7, TGF‐β1, p‐SMAD3, SMAD3, and GAPDH was examined by western blot. The interaction between SMAD7 and miR‐106b was assessed by luciferase reporter system. Shikonin inhibited Huh7 and HepG2 cell growth in a dose‐dependent manner while induced cell death in a time‐dependent manner. In addition, the expression of miR‐106b was reduced after shikonin treatment. Moreover, miR‐106b attenuated the suppressive effects of shikonin on HCC cell migration and epithelial–mesenchymal transition (EMT). SMAD7 was predicted as a target of miR‐106b and the prediction was confirmed by luciferase reporter system. Additionally, we observed that SMAD7 reversed the promotive effects of miR‐106b on HCC cell progression and EMT. The subsequent western blot assay revealed that shikonin could modulate SMAD7/TGF‐β signaling pathway by targeting miR‐106b. In conclusion, Shikonin suppresses cell progression and EMT and accelerates cell death of HCC cells via modulating miR‐106b/SMAD7/TGF‐β signaling pathway, suggesting shikonin could be an effective agent for HCC treatment.  相似文献   

8.
9.
10.
Sulfiredoxin 1 (SRXN1) is a pivotal regulator of the antioxidant response in eukaryotic cells. However, the role of SRXN1 in hepatocellular carcinoma (HCC) is far from clear. The present study aims to elucidate whether SRXN1 participates in tumorigenesis and metastasis of HCC and to determine the molecular mechanisms. We found that SRXN1 expression was up‐regulated in HCC tissue samples and correlated with poor prognosis in HCC patients. We also observed that SRXN1 knockdown by transient siRNA transfection inhibited HCC cell proliferation, migration and invasion. Overexpression of SRXN1 increased HCC cell migration and invasion. B‐cell translocation gene 2 (BTG2) was identified as a downstream target of SRXN1. Mechanistic studies revealed that SRXN1‐depleted reactive oxygen species (ROS) modulated migration and invasion of HCC cells. In addition, the ROS/p65/BTG2 signalling hub was found to regulate the epithelial‐mesenchymal transition (EMT), which mediates the pro‐metastasis role of SRXN1 in HCC cells. In vivo experiments showed SRXN1 promotes HCC tumour growth and metastasis in mouse subcutaneous xenograft and metastasis models. Collectively, our results revealed a novel pro‐tumorigenic and pro‐metastatic function of SRXN1 in HCC. These findings demonstrate a rationale to exploit SRXN1 as a therapeutic target effectively preventing metastasis of HCC.  相似文献   

11.
12.
13.
Macular fibrosis is a vital obstacle of vision acuity improvement of age-related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL-2) on epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor β2 (TGF-β2) expression in retinal pigment epithelial (RPE) cells. 10 μg/L IL-2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α-smooth muscle actin (α-SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL-1), TGF-β2, and the activation of the JAK/STAT3 and NF-κB signaling pathway. Furthermore, JAK/STAT3 and NF-κB signaling pathways were specifically blocked by WP1066 or BAY11-7082, respectively, and the expression of α-SMA, COL-1, Fn and TGF-β2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL-2 with or without WP1066 or BAY11-7082. After induction of IL-2, the expressions of Fn, COL-1, TGF-β2 protein were significantly increased, and this effect was correlated with IL-2 treatment duration, while α-SMA protein expression did not change significantly. Both WP1066 and BAY11-7082 could effectively downregulate the expression of Fn, COL-1 and TGF-β2 induced by IL-2. What's more, both NF-κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF-κB inhibitor BAY 11-7082 could obviously decrease RPE cells migration capability induced by IL-2. IL-2 promotes cell migration, ECM synthesis and TGF-β2 expression in RPE cells via JAK/STAT3 and NF-κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.  相似文献   

14.
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion. Subject terms: Cell migration, Lung cancer  相似文献   

15.
Chronic kidney disease (CKD) is a traumatic disease with significant psychic consequences to the patient's overall physical condition. microRNA-206 (miR-206) has been reported to play an essential role in the development of various diseases. The purpose of the present study is to investigate the effect of miR-206 through the JAK/STAT signaling pathway on epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells and glomerulosclerosis in rats with CKD. The targeting relationship between miR-206 and ANXA1 was verified. To explore the role of miR-206 in CKD, the model of CKD rats was established to detect glomerular sclerosis index (GSI), contents of interleukin-6 (IL-6) and transforming growth factor-beta1 (TGF-β1), and expression of type IV collagen. Moreover, to further determine the roles of both miR-206 and the JAK/STAT signaling pathway in CKD, the gain- and loss-of function approaches were performed with the expression of ANXA1, α-SMA, E-cadherin, vimentin, N-cadherin, and the JAK/STAT signaling pathway-related genes detected. miR-206 negatively targeted ANXA1. Overexpressed miR-206 inhibited the degeneration and interstitial fibrosis of renal tubular epithelial cells, decreased GSI of rats, and the expression of type IV collagen, TGF-β1 and IL-6. Overexpressed miR-206 inhibited the degeneration of renal tubular epithelial cells, the expression of ANXA1, α-SMA, TGF-β1, p-STAT3, STAT3, p-STAT1, STAT1, p-JAK2, and JAK2, while promoted the expression of E-cadherin. Taken together the results, miR-206 inhibits EMT of renal tubular epithelial cells and glomerulosclerosis by inactivating the JAK/STAT signaling pathway via ANXA1 in CKD.  相似文献   

16.
P16 is the product of cyclin-dependent kinase 2 (CDKN2A) gene and plays multi-pronged roles in the cancer progression. Breast cancer (BC) is the most commonly diagnosed cancer type among females. In the current study, the potential function of P16 in the growth and metastasis of BC was investigated. Firstly, the expression statuses of P16 in different cancer types were investigated using Oncomine database and validated with corresponding cancer cell lines. Afterwards, the expression of P16 was knocked down in BC cell line BT-549 and the effect on the cell proliferation, sensitivity to paclitaxel (TAX), apoptosis, migration, and invasion abilities was assessed using CCK-8, Edu, flow cytometry, scratch, and transwell assays, respectively. The influence of P16 inhibition and P16 overexpression on the activity of IL-6/JAK/STAT3 signaling was explored. Additionally, the effect of P16 inhibition on the tumor growth was verified with a BC xenograft mice model. The abnormal expression of P16 was detected in BC cell line BT-549 as well as colorectal cancer and osteosarcoma cell lines. The inhibition of P16 suppressed the cell proliferation, invasion, and migration abilities while induced the apoptosis and sensitivity to TAX in BT-549 cells. At molecular level, P16 knockdown inhibited the expression of IL6ST and Survivin, and the phosphorylation of JAK2 and STAT3. However, the induced expression of P16 in P16-knockdown BT-549 cells restored the activity of IL-6/JAK2/STAT3 pathway. The results of in vitro assays were confirmed with BC xenograft models: the inhibition of P16 decreased the tumor growth rate. Findings outlined in the current study demonstrated that the inhibition of P16 decreased the growth and metastasis potential of BC cells by inhibiting IL-6/JAK2/STAT3 signaling.  相似文献   

17.
D L Silver  D J Montell 《Cell》2001,107(7):831-841
The JAK/STAT signaling pathway, renowned for its effects on cell proliferation and survival, is constitutively active in various human cancers, including ovarian. We have found that JAK and STAT are required to convert the border cells in the Drosophila ovary from stationary, epithelial cells to migratory, invasive cells. The ligand for this pathway, Unpaired (UPD), is expressed by two central cells within the migratory cell cluster. Mutations in upd or jak cause defects in migration and a reduction in the number of cells recruited to the cluster. Ectopic expression of either UPD or JAK is sufficient to induce extra epithelial cells to migrate. Thus, a localized signal activates the JAK/STAT pathway in neighboring epithelial cells, causing them to become invasive.  相似文献   

18.
Gastric cancer (GC) is one of the main causes of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) is an important biological process involving the process by which malignant tumor cells obtain the ability of migration, invasion, resistance of apoptosis, and degradation in the extracellular matrix. The current study aimed at investigating whether bone marrow X kinase Rho GTPase activating protein 12 (BMX-ARHGAP) fusion gene affects GC. First, short hairpin RNA (shRNA) against BMX-ARHGAP or BMX-ARHGAP were introduced to treat SGC-7901 cells with the highest BMX-ARHGAP among the five GC cell lines (SGC-7901, MKN-45, NCI-N87, SNU-5, and AGS). Next, cell vitality, drug resistance, migration, and invasion of SGC-7901 cells, activities of Rho and JAK/STAT axis, as well as EMT and lymph node metastasis (LNM) were evaluated. The survival rate of the mice was then determined through the transfection of the specific pathogen-free NOD-SCID mice with treated SGC-7901 cells. The results showed that BMX-ARHGAP expression was associated with the infiltration degree of GC tumor and poor prognosis for patients with GC. BMX-ARHGAP silencing was found to play an inhibitory role in the Rho and JAK/STAT axis to reduce cell vitality, drug resistance, migration and invasion, reverse EMT process, as well as inhibit LNM. BMX-ARHGAP overexpression was observed to have induced effects on GC cells as opposed to those inhibited by BMX-ARHGAP silencing. The survival rate of mice was increased after transfection with silenced BMX-ARHGAP. These findings provided evidence that the suppression of BMX-ARHGAP resulted in the inhibition of RhoA to restraint the development of GC cells by blocking the JAK/STAT axis.  相似文献   

19.
Invasion and metastasis in hepatocellular carcinoma (HCC) results in poor prognosis. Human intervention in these pathological processes may benefit the treatment of HCC. The aim of the present study is to elucidate the mechanism of miR-140-3p affecting epithelial-mesenchymal transition (EMT), invasion, and metastasis in HCC. Microarray analysis was performed for differentially expressed genes screening. The target relationship between miR-140-3p and GRN was analyzed. Small interfering RNA (siRNA) against granulin (GRN) was synthesized. EMT markers were detected, and invasion and migration were evaluated in HCC cells introduced with a miR-140-3p inhibitor or mimic, or siRNA against GRN. A mechanistic investigation was conducted for the determination of mitogen-activated protein kinase (MAPK) signaling pathway-related genes and EMT markers (E-cadherin, N-cadherin, and Vimentin). GRN was highlighted as an upregulated gene in HCC. GRN was a target gene of miR-140-3p. Elevation of miR-140-3p or inhibition of GRN restrained the EMT process and suppressed the HCC cell migration and invasion. HCC cells treated with the miR-140-3p mimic or siRNA-GRN exhibited decreased GRN expression and downregulated the expressions of the MAPK signaling pathway-related genes, N-cadherin, and Vimentin but upregulated the expression of E-cadherin. GRN silencing can reverse the activation of the MAPK signaling pathway and induction of EMT mediated by miR-140-3p inhibition. Taken together, the results show that miR-140-3p confers suppression of the MAPK signaling pathway by targeting GRN, thus inhibiting EMT, invasion, and metastasis in HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号