首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Septic shock is a common medical condition with a mortality approaching 50% where early diagnosis and treatment are of particular importance for patient survival. Novel biomarkers that serve as prompt indicators of sepsis are urgently needed. High‐throughput technologies assessing circulating microRNAs represent an important tool for biomarker identification, but the blood‐compartment specificity of these miRNAs has not yet been investigated. We characterized miRNA profiles from serum exosomes, total serum and blood cells (leukocytes, erythrocytes, platelets) of sepsis patients by next‐generation sequencing and RT‐qPCR (n = 3 × 22) and established differences in miRNA expression between blood compartments. In silico analysis was used to identify compartment‐specific signalling functions of differentially regulated miRNAs in sepsis‐relevant pathways. In septic shock, a total of 77 and 103 miRNAs were down‐ and up‐regulated, respectively. A majority of these regulated miRNAs (14 in serum, 32 in exosomes and 73 in blood cells) had not been previously associated with sepsis. We found a distinctly compartment‐specific regulation of miRNAs between sepsis patients and healthy volunteers. Blood cellular miR‐199b‐5p was identified as a potential early indicator for sepsis and septic shock. miR‐125b‐5p and miR‐26b‐5p were uniquely regulated in exosomes and serum, respectively, while one miRNA (miR‐27b‐3p) was present in all three compartments. The expression of sepsis‐associated miRNAs is compartment‐specific. Exosome‐derived miRNAs contribute significant information regarding sepsis diagnosis and survival prediction and could serve as newly identified targets for the development of novel sepsis biomarkers.  相似文献   

2.
Since the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) remains poor, identification of miRNA as a potential prognostic biomarker for HSCC may help improve personalized therapy. In the 2 cohorts with a total of 511 patients with HSCC (discovery: N = 372 and validation: N = 139) after post‐operative radiotherapy, we used miRNA microarray and qRT‐PCR to screen out the significant miRNAs which might predict survival. Associations of miRNAs and the signature score of these miRNAs with survival were performed by Kaplan‐Meier survival analysis and multivariate Cox hazard model. Among 9 candidate, miRNAs, miR‐200a‐3p, miR‐30b‐5p, miR‐3161, miR‐3605‐5p, miR‐378b and miR‐4451 were up‐regulated, while miR‐200c‐3p, miR‐429 and miR‐4701 were down‐regulated after validation. Moreover, the patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly worse overall survival (OS) and disease‐specific survival (DSS) than did those with low expression (log‐rank P < .05). Patients with a high‐risk score had significant worse OS and DSS than those with low‐risk score. Finally, after adjusting for other important prognostic confounders, patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly high risk of overall death and death owing to HSCC and patients with a high‐risk score has approximately 2‐fold increased risk in overall death and death owing to HSCC compared with those with a low‐risk score. These findings indicated that the 3‐miRNA‐based signature may be a novel independent prognostic biomarker for patients given surgery and post‐operative radiotherapy, supporting that these miRNAs may jointly predict survival of HSCC.  相似文献   

3.
Spleen tyrosine kinase (SYK) gene has been identified as novel susceptibility locus for ischaemic stroke (IS) previously. However, regulation of SYK gene remains unknown in IS. In this study, we aimed to identify miRNAs that might be involved in the development of IS by targeting SYK gene. miRNAs were firstly screened by bioinformatics predicting tool. The expression levels of SYK gene were detected by qRT‐PCR and western blotting, respectively, after miRNA transfection. Luciferase reporter assay was applied to investigate the direct binding between miRNAs and target gene. miRNA levels were detected by miRNA TaqMan assays in the blood cells of 270 IS patients and 270 control volunteers. Results suggest that SYK gene might be a direct target of miR‐129‐2‐3p. The blood level of miR‐129‐2‐3p was significantly lower in IS patients (P < 0.05), and negatively associated with the risk of IS (adjusted OR: 0.88; 95% CI: 0.80‐0.98; P = 0.021) by multivariable logistic regression analysis. The blood levels of SYK gene were significantly higher in IS patients, and miR‐129‐2‐3p expression was negatively correlated with mean platelet volume. In summary, our study suggests that miR‐129‐2‐3p might be involved in the pathogenesis of IS through interrupting SYK expression and the platelet function, and further investigation is needed to explore the underlying mechanism.  相似文献   

4.
Micro‐RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end‐stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal‐Network, miRNA‐GO‐Network and miRNA‐Gene‐Network. According to the fold change in the network and probability values in the microarray cohort, RT‐PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR‐340 achieved statistically significant. miR‐340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR‐340 in cultured neonatal rat cardiomyocytes to identify whether miR‐340 plays a determining role in the progression of heart failure. ANP, BNP and caspase‐3 were significantly elevated in the miR‐340 transfected cells compared with controls (P < 0.05). The cross‐sectional area of overexpressing miR‐340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end‐stage heart failure and identified miR‐340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.  相似文献   

5.
6.
7.
MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community‐based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed‐effects regression modeling of grip strength (kg) versus continuous miRNA ‘Cq’ values and versus binary miRNA expression was performed. We conducted an integrative miRNA–mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA–grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR‐20a‐5p (FDR q 1.8 × 10?6) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR‐126‐3p, miR‐30a‐5p, and miR‐30d‐5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin‐mediated proteolysis. Our comprehensive assessment in a community‐based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength.  相似文献   

8.
Heat stress has profound effects on animal performance and muscle function, and microRNAs (miRNAs) play a critical role in muscle development and stress responses. To characterize the changes in miRNAs in skeletal muscle responding to heat stress, the miRNA expression profiles of longissimus dorsi muscles of pigs raised under constant heat stress (30 °C; = 8) or control temperature (22 °C; = 8) for 21 days were analyzed by Illumina deep sequencing. A total of 58 differentially expressed miRNAs were identified with 30 down‐regulated and 28 up‐regulated, and 63 differentially expressed target genes were predicted by miRNA–mRNA joint analysis. GO and KEGG analyses showed that the genes regulated by differentially expressed miRNAs were enriched in glucose metabolism, cytoskeletal structure and function and stress response. Real‐time PCR showed that the mRNA levels of PDK4, HSP90 and DES were significantly increased, whereas those of SCD and LDHA significantly decreased by heat exposure. The protein levels of CALM1, DES and HIF1α were also significantly increased by constant heat. These results demonstrated that the change in miRNA expression in porcine longissimus dorsi muscle underlies the changes in muscle structure and metabolism in porcine skeletal muscle affected by constant heat stress.  相似文献   

9.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

10.
11.
12.
Accumulating evidence suggests a role for microRNAs (miRNAs) in regulating various processes of mammalian postnatal development and aging. To investigate the changes in blood‐based miRNA expression from preterm infants to adulthood, we compared 365 miRNA expression profiles in a screening set of preterm infants and adults. Approximately one‐third of the miRNAs were constantly expressed from postnatal development to adulthood, another one‐third were differentially expressed between preterm infants and adults, and the remaining one‐third were not detectable in these two groups. Based on their expression in infants and adults, the miRNAs were categorized into five classes, and six of the seven miRNAs chosen from each class except one with age‐constant expression were confirmed in a validation set containing infants, children, and adults. Comparing the chromosomal locations of the different miRNA classes revealed two hot spots: the miRNA cluster on 14q32.31 exhibited age‐constant expression, and the one on 9q22.21 exhibited up‐regulation in adults. Furthermore, six miRNAs detectable in adults were down‐regulated in older adults, and four chosen for individual quantification were verified in the validation set. Analysis of the network functions revealed that differentially regulated miRNAs between infants and adults and miRNAs that decreased during aging shared two network functions: inflammatory disease and inflammatory response. Four expression patterns existed in the 11 miRNAs from infancy to adulthood, with a significant transition in ages 9–20 years. Our results provide an overview on the regulation pattern of blood miRNAs throughout life and the possible biological functions performed by different classes of miRNAs.  相似文献   

13.
14.
《Genomics》2022,114(4):110407
To explore extracellular vesicle microRNAs (EV miRNAs) and their target mRNAs in relation to diabetic kidney disease (DKD), we performed paired plasma and urinary EV small RNA sequencing (n = 18) in patients with type 2 diabetes and DKD (n = 5) and healthy subjects (n = 4) and metabolic network analyses using our own miRNA and public mRNA datasets. We found 13 common differentially expressed EV miRNAs in both fluids and 17 target mRNAs, including RRM2, NT5E, and UGDH. Because succinate dehydrogenase B was suggested to interact with proteins encoded by these three genes, we measured urinary succinate and adenosine in a validation study (n = 194). These two urinary metabolite concentrations were associated with DKD progression. In addition, renal expressions of NT5E and UGDH proteins were increased in db/db mice with DKD compared to control mice. In conclusion, we profiled DKD-related EV miRNAs in plasma and urine samples and found their relevant target pathways.  相似文献   

15.

Background

MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that regulate gene expression by targeting mRNAs. Recently, miRNAs have been shown to play important roles in the etiology of various diseases. However, little is known about their roles in the development of osteoporosis. Circulating monocytes are osteoclast precursors that also produce various factors important for osteoclastogenesis. Previously, we have identified a potential biomarker miR-133a in circulating monocytes for postmenopausal osteoporosis. In this study, we aimed to further identify significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis.

Methodology/Principal Findings

We used ABI TaqMan miRNA array followed by qRT-PCR validation in human circulating monocytes from 10 high BMD and 10 low BMD postmenopausal Caucasian women to identify miRNA biomarkers. MiR-422a was up-regulated with marginal significance (P = 0.065) in the low compared with the high BMD group in the array analysis. However, a significant up-regulation of miR-422a was identified in the low BMD group by qRT-PCR analysis (P = 0.029). We also performed bioinformatic target gene analysis and found several potential target genes of miR-422a which are involved in osteoclastogenesis. Further qRT-PCR analyses of the target genes in the same study subjects showed that the expression of five of these genes (CBL, CD226, IGF1, PAG1, and TOB2) correlated negatively with miR-422a expression.

Conclusions/Significance

Our study suggests that miR-422a in human circulating monocytes (osteoclast precursors) is a potential miRNA biomarker underlying postmenopausal osteoporosis.  相似文献   

16.
Preterm birth (PTB) can lead to lifelong complications and challenges. Identifying and monitoring molecular signals in easily accessible biological samples that can diagnose or predict the risk of preterm labour (PTL) in pregnant women will reduce or prevent PTBs. A number of studies identified putative biomarkers for PTL including protein, miRNA and hormones from various body fluids. However, biomarkers identified from these studies usually lack consistency and reproducibility. Extracellular vesicles (EVs) in circulation have gained significant interest in recent years as these vesicles may be involved in cell‐cell communication. We have used an improved small RNA library construction protocol and a newly developed size exclusion chromatography (SEC)‐based EV purification method to gain a comprehensive view of circulating RNA in plasma and its distribution by analysing RNAs in whole plasma and EV‐associated and EV‐depleted plasma. We identified a number of miRNAs in EVs that can be used as biomarkers for PTL, and these miRNAs may reflect the pathological changes of the placenta during the development of PTL. To our knowledge, this is the first study to report a comprehensive picture of circulating RNA, including RNA in whole plasma, EV and EV‐depleted plasma, in PTL and reveal the usefulness of EV‐associated RNAs in disease diagnosis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号