首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

2.
The effect of protriptyline on Ca2+ physiology in human hepatoma is unclear. This study explored the effect of protriptyline on [Ca2+]i and cytotoxicity in HepG2 human hepatoma cells. Protriptyline (50–150 μM) evoked [Ca2+]i rises. The Ca2+ entry was inhibited by removal of Ca2+. Protriptyline‐induced Ca2+ entry was confirmed by Mn2+‐induced quench of fura‐2 fluorescence. Except nifedipine, econazole, SKF96365, GF109203X, and phorbol 12‐myristate 13 acetate did not inhibit Ca2+ entry. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5‐di‐tert‐butylhydroquinone (BHQ) inhibited 40% of protriptyline‐induced response. Treatment with protriptyline abolished BHQ‐induced response. Inhibition of phospholipase C (PLC) suppressed protriptyline‐evoked response by 70%. At 20–40 μM, protriptyline killed cells which was not reversed by the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid‐acetoxymethyl ester (BAPTA/AM). Together, in HepG2 cells, protriptyline induced [Ca2+]i rises that involved Ca2+ entry through nifedipine‐sensitive Ca2+ channels and PLC‐dependent Ca2+ release from endoplasmic reticulum. Protriptyline induced Ca2+‐independent cell death.  相似文献   

3.
Tetramethylpyrazine (TMP) is a compound purified from herb. Its effect on Ca2+ concentrations ([Ca2+]i) in renal cells is unclear. This study examined whether TMP altered Ca2+ signaling in Madin‐Darby canine kidney (MDCK) cells. TMP at 100–800 μM induced [Ca2+]i rises, which were reduced by Ca2+ removal. TMP induced Mn2+ influx implicating Ca2+ entry. TMP‐induced Ca2+ entry was inhibited by 30% by modulators of protein kinase C (PKC) and store‐operated Ca2+ channels. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5‐di‐tert‐butylhydroquinone (BHQ) inhibited 93% of TMP‐evoked [Ca2+]i rises. Treatment with TMP abolished BHQ‐evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) abolished TMP‐induced responses. TMP at 200–1000 μM decreased viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid‐acetoxymethyl ester. Together, in MDCK cells, TMP induced [Ca2+]i rises by evoking PLC‐dependent Ca2+ release from endoplasmic reticulum and Ca2+ entry via PKC‐sensitive store‐operated Ca2+ entry. TMP also caused Ca2+‐independent cell death.  相似文献   

4.
5.
The inflammatory response plays important roles in acne vulgaris and pain pathogenesis. In previous study, Esc‐1GN with anti‐inflammatory, antimicrobial, and lipopolysacchride (LPS) binding activity was identified from the skin of the frog Hylarana guentheri. Here, we report its therapeutic potentials for acne vulgaris and inflammatory pain. Esc‐1GN destroyed the cell membrane of Propionibacteria acnes in the membrane permeability assays. In addition, bacterial agglutination test suggested that Esc‐1GN triggered the agglutination of P. acnes, which was affected by LPS and Ca2+. Meanwhile, in vivo anti‐P. acnes and anti‐inflammatory effects of Esc‐1GN were confirmed by reducing the counts of P. acnes in mice ear, relieving P. acnes‐induced mice ear swelling, decreasing mRNA expression and the production of pro‐inflammatory cytokines, and attenuating the infiltration of inflammatory cells. Moreover, Esc‐1GN also displayed antinociceptive effect in mice induced by acetic acid and formalin. Therefore, Esc‐1GN is a promising candidate drug for treatment of acne vulgaris and inflammatory pain.  相似文献   

6.
Alcohol is a potent neuroteratogen that can trigger neuronal death in the developing brain. However, the mechanism underlying this alcohol‐induced neuronal death is not fully understood. Utilizing primary cultures of cerebellar granule neurons (CGN), we tested the hypothesis that the alcohol‐induced increase in intracellular calcium [Ca2+]i causes the death of CGN. Alcohol induced a dose‐dependent (200–800 mg/dL) neuronal death within 24 h. Ratiometric Ca2+ imaging with Fura‐2 revealed that alcohol causes a rapid (1–2 min), dose‐dependent increase in [Ca2+]i, which persisted for the duration of the experiment (5 or 7 min). The alcohol‐induced increase in [Ca2+]i was observed in Ca2+‐free media, suggesting intracellular Ca2+ release. Pre‐treatment of CGN cultures with an inhibitor (2‐APB) of the inositol‐triphosphate receptor (IP3R), which regulates Ca2+ release from the endoplasmic reticulum (ER), blocked both the alcohol‐induced rise in [Ca2+]i and the neuronal death caused by alcohol. Similarly, pre‐treatment with BAPTA/AM, a Ca2+‐chelator, also inhibited the alcohol‐induced surge in [Ca2+]i and prevented neuronal death. In conclusion, alcohol disrupts [Ca2+]i homeostasis in CGN by releasing Ca2+ from intracellular stores, resulting in a sustained increase in [Ca2+]i. This sustained increase in [Ca2+]i may be a key determinant in the mechanism underlying alcohol‐induced neuronal death.  相似文献   

7.
In this study, the functional consequences of the pharmacological modulation of the M‐current (IKM) on cytoplasmic Ca2+ intracellular Ca2+concentration ([Ca2+]i) changes and excitatory neurotransmitter release triggered by various stimuli from isolated rat cortical synaptosomes have been investigated. Kv7.2 immunoreactivity was identified in pre‐synaptic elements in cortical slices and isolated glutamatergic cortical synaptosomes. In cerebrocortical synaptosomes exposed to 20 mM [K+]e, the IKM activator retigabine (RT, 10 μM) inhibited [3H]d ‐aspartate ([3H]d ‐Asp) release and caused membrane hyperpolarization; both these effects were prevented by the IKM blocker XE‐991 (20 μM). The IKM activators RT (0.1–30 μM), flupirtine (10 μM) and BMS‐204352 (10 μM) inhibited 20 mM [K+]e‐induced synaptosomal [Ca2+]i increases; XE‐991 (20 μM) abolished RT‐induced inhibition of depolarization‐triggered [Ca2+]i transients. The P/Q‐type voltage‐sensitive Ca2+channel (VSCC) blocker ω‐agatoxin IVA prevented RT‐induced inhibition of depolarization‐induced [Ca2+]i increase and [3H]d ‐Asp release, whereas the N‐type blocker ω‐conotoxin GVIA failed to do so. Finally, 10 μM RT did not modify the increase of [Ca2+]i and the resulting enhancement of [3H]d ‐Asp release induced by [Ca2+]i mobilization from intracellular stores, or by store‐operated Ca2+channel activation. Collectively, the present data reveal that the pharmacological activation of IKM regulates depolarization‐induced [3H]d ‐Asp release from cerebrocortical synaptosomes by selectively controlling the changes of [Ca2+]i occurring through P/Q‐type VSCCs.  相似文献   

8.
Bone marrow stromal cells (BMSCs) are an interesting subject of research because they have characteristics of mesenchymal stem cells. We investigated intracellular Ca2+ signaling in rat BMSCs. Agonists for purinergic receptors increased intracellular Ca2+ levels ([Ca2+]i). The order of potency followed ATP = UTP > ADP = UDP. ATP‐induced rise in [Ca2+]i was suppressed by U73122 and suramin, but not by pyridoxalphosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS), suggesting the functional expression of G protein‐coupled P2Y2 receptors. RT‐PCR and immunohistochemical studies also showed the expression of P2Y2 receptors. [Ca2+]i response to UTP changed with cell density. The UTP‐induced rise in [Ca2+]i was greatest at high density. Vmax (maximum Ca2+ response) and EC50 (agonist concentration that evokes 50% of Vmax) suggest that the amount and property of P2Y2 receptors were changed by cell density. Note that UTP induced Ca2+ oscillation at only medium cell density. Pharmacological studies indicated that UTP‐induced Ca2+ oscillation required Ca2+ influx by store‐operated Ca2+ entry. Carbenoxolone, a gap junction blocker, enhanced Ca2+ oscillation. Immunohistochemical and quantitative real‐time PCR studies revealed that proliferating cell nuclear antigen (PCNA)‐positive cells declined but the mRNA expression level of the P2Y2 receptor increased as cell density increased. Co‐application of fetal calf serum with UTP induced Ca2+ oscillation at high cell density. These results suggest that the different patterns observed for [Ca2+]i mobilization with respect to cell density may be associated with cell cycle progression. J. Cell. Physiol. 219: 372–381, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Precocious leaf senescence can reduce crop yield and quality by limiting the growth stage. Melatonin has been shown to delay leaf senescence; however, the underlying mechanism remains obscure. Here, we show that melatonin offsets abscisic acid (ABA) to protect photosystem II and delay the senescence of attached old leaves under the light. Melatonin induced H2O2 accumulation accompanied by an upregulation of melon respiratory burst oxidase homolog D (CmRBOHD) under ABA-induced stress. Both melatonin and H2O2 induced the accumulation of cytoplasmic-free Ca2+ ([Ca2+]cyt) in response to ABA, while blocking of Ca2+ influx channels attenuated melatonin- and H2O2-induced ABA tolerance. CmRBOHD overexpression induced [Ca2+]cyt accumulation and delayed leaf senescence, whereas deletion of Arabidopsis AtRBOHD, a homologous gene of CmRBOHD, compromised the melatonin-induced [Ca2+]cyt accumulation and delay of leaf senescence in Arabidopsis under ABA stress. Furthermore, melatonin, H2O2 and Ca2+ attenuated ABA-induced K+ efflux and subsequent cell death. CmRBOHD overexpression and AtRBOHD deletion alleviated and aggravated the ABA-induced K+ efflux, respectively. Taken together, our study unveils a new mechanism by which melatonin offsets ABA action to delay leaf senescence via RBOHD-dependent H2O2 production that triggers [Ca2+]cyt accumulation and subsequently inhibits K+ efflux and delays cell death/leaf senescence in response to ABA.  相似文献   

10.
Voltage‐dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation, and the acrosome reaction (AR), all essential for fertilization. Pharmacological evidence has suggested T‐type calcium channels participate in the AR. Niflumic acid (NA), a non‐steroidal anti‐inflammatory drug commonly used as chloride channel blocker, blocks T‐currents in mouse spermatogenic cells and Cl? channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different CaV3 members previously detected in these cells. Electrophysiological patch‐clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing CaV3 channels. NA blocks mouse spermatogenic cell T‐type currents with an IC50 of 73.5 µM, without major voltage‐dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T‐type channels. Interestingly, we found that heterologously expressed CaV3.1 and CaV3.3 channels were more sensitive to NA than CaV3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug‐channel binding predicts that NA binds preferentially to the extracellular face of CaV3.1 channels. The biophysical characteristics of mouse spermatogenic cell T‐type currents more closely resemble those from heterologously expressed CaV3.1 channels, including their sensitivity to NA. As CaV3.1 null mice maintain their spermatogenic cell T‐currents, it is likely that a novel CaV3.2 isoform is responsible for them. J. Cell. Physiol. 227: 2542–2555, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
The voltage‐operated Ca2+ channels (VOCC), which allow Ca2+ influx from the extracellular space, are inhibited by anti‐hypertensive agents such as verapamil and nifedipine. The Ca2+ entering from outside into the cell triggers Ca2+ release from the sarcoplasmic reticulum (SR) stores. To refill the depleted Ca2+ stores in the SR, another type of Ca2+ channels in the cell membrane, known as store‐operated Ca2+ channels (SOCC), are activated. These SOCCs are verapamil and nifedipine resistant, but are SKF 96465 (SK) and gadolinium (Gd3+) sensitive. Both SK and Gd3+ have been shown to reduce [Ca2+]i in the smooth muscle, but their effects on blood pressure have not been reported. Our results demonstrated that both SK and Gd3+ produced a dose‐dependent reduction in blood pressure in rat. The combination of SK and verapamil produced an additive action in lowering the blood pressure. Furthermore, SK, but not Gd3+ suppressed proliferation of vascular smooth muscle cells in the absence or presence of lysophosphatidic acid (LPA). SK decreased the elevation of [Ca2+]i induced by LPA, endothelin‐1 (ET‐1) and angiotensin II (Ang II), but did not affect the norepinephrine (NE)‐evoked increase in [Ca2+]i. On the other hand, Gd3+ inhibited the LPA and Ang II induced change in [Ca2+]i, but had no effect on the ET‐1 and NE induced increase in [Ca2+]i. The combination of verapamil and SK abolished the LPA‐ or adenosine‐5′‐triphosphate (ATP)‐induced [Ca2+]i augmentation. These results suggest that SOCC inhibitors, like VOCC blocker, may serve as promising drugs for the treatment of hypertension.  相似文献   

12.
Lysophosphatidic acid (LPA) plays various roles in the regulation of cell growth as a lipid mediator. We studied the effect of LPA on intracellular Ca2+ concentration ([Ca2+]i) with Fura‐2 in the neural retina of chick embryo during neurogenesis. Bath application of LPA (1–100 μM) to the embryonic day 3 (E3) chick retina caused an increase in [Ca2+]i in a dose‐dependent manner, with an EC50 value of 9.2 μM. The Ca2+ rise was also evoked in a Ca2+‐free medium, suggesting that release of Ca2+ from intracellular Ca2+ stores (Ca2+ mobilization) was induced by LPA. U‐73122, a blocker of phospholipase C (PLC), inhibited the Ca2+ rise to LPA. Pertussis toxin partially inhibited the Ca2+ rise to LPA, indicating that Gi/Go protein was at least partially involved in the LPA response. The developmental profile of the LPA response was studied from E3 to E13. The Ca2+ rise to LPA declined drastically from E3 to E7, in parallel with decrease in mitotic activity of retinal progenitor cells. The signal transduction pathway and developmental profile of the Ca2+ response to LPA were the same as those of the Ca2+ response to adenosine triphosphate (ATP), which enhances the proliferation of retinal progenitor cells. The coapplication of LPA with ATP resulted in enhancement of Ca2+ rise in the E3 chick retina. Our results show that LPA induces Ca2+ mobilization in the embryonic chick retina during neurogenesis. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 495–504, 1999  相似文献   

13.
Abstract: The involvement of B-50, protein kinase C (PKC), and PKC-mediated B-50 phosphorylation in the mechanism of Ca2+-induced noradrenaline (NA) release was studied in highly purified rat cerebrocortical synaptosomes permeated with streptolysin-O. Under optimal permeation conditions, 12% of the total NA content (8.9 pmol of NA/mg of synaptosomal protein) was released in a largely (>60%) ATP-dependent manner as a result of an elevation of the free Ca2+ concentration from 10?8 to 10?5M Ca2+ The Ca2+ sensitivity in the micromolar range is identical for [3H]NA and endogenous NA release, indicating that Ca2+-induced [3H]NA release originates from vesicular pools in noradrenergic synaptosomes. Ca2+-induced NA release was inhibited by either N- or C-terminal-directed anti-B-50 antibodies, confirming a role of B-50 in the process of exocytosis. In addition, both anti-B-50 antibodies inhibited PKC-mediated B-50 phosphorylation with a similar difference in inhibitory potency as observed for NA release. However, in a number of experiments, evidence was obtained challenging a direct role of PKC and PKC-mediated B-50 phosphorylation in Ca2+-induced NA release. PKC pseudosubstrate PKC19-36, which inhibited B-50 phosphorylation (IC50 value, 10?5M), failed to inhibit Ca2+-induced NA release, even when added before the Ca2+ trigger. Similar results were obtained with PKC inhibitor H-7, whereas polymyxin B inhibited B-50 phosphorylation as well as Ca2+-induced NA release. Concerning the Ca2+ sensitivity, we demonstrate that PKC-mediated B-50 phosphorylation is initiated at a slightly higher Ca2+ concentration than NA release. Moreover, phorbol ester-induced PKC down-regulation was not paralleled by a decrease in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Finally, the Ca2+- and phorbol ester-induced NA release was found to be additive, suggesting that they stimulate release through different mechanisms. In summary, we show that B-50 is involved in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Evidence is presented challenging a role of PKC-mediated B-50 phosphorylation in the mechanism of NA exocytosis after Ca2+ influx. An involvement of PKC or PKC-mediated B-50 phosphorylation before the Ca2+ trigger is not ruled out. We suggest that the degree of B-50 phosphorylation, rather than its phosphorylation after PKC activation itself, is important in the molecular cascade after the Ca2+ influx resulting in exocytosis of NA.  相似文献   

14.
Reactive oxygen species (ROS) generated by a variety of endogenous factors and roles in embryonic stem (ES) cells has yet to be identified. Thus, we examined role of arachidonic acid (AA) in H2O2‐indued proliferation of mouse ES cells and its related signaling molecules. AA release was maximally increased in response to 10?4 M H2O2 for 1 h. In addition, H2O2 increased intracellular Ca2+ concentration ([Ca2+]i) and the phosphorylation of protein kinase C (PKC), p44/42, p38 mitogen‐activated protein kinase (MAPK), and JNK/SAPK. Moreover, H2O2 induced an increase in the phosphorylation of epidermal growth factor receptor (EGFR), which was blocked by the inhibition of p44/42 or p38 MAPKs. The inhibition of each signal molecule with specific inhibitors blocked H2O2‐induced cytosolic phospholipase A2 (cPLA2) activation and AA release. H2O2 increased NF‐κB phosphorylation to induce an increase in the levels of cyclooxygenase (COX)‐2 proteins. Subsequently, H2O2 stimulated PGE2 synthesis, which was reduced by the inhibition of NF‐κB activation. Moreover, each H2O2 or PGE2 increased DNA synthesis and the number of cells. However, H2O2‐induced increase in DNA synthesis was inhibited by the suppression of cPLA2 pathway. In conclusion, H2O2 increased AA release and PGE2 production by the upregulation of cPLA2 and COX‐2 via Ca2+/PKC/MAPKs and EGFR transactivation, subsequently proliferation of mouse ES cells. J. Cell. Biochem. 106: 787–797, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Thrombin increases the cytosolic Ca2+ concentrations and induces NO production by activating proteinase‐activated receptor 1 (PAR1) in vascular endothelial cells. The store‐operated Ca2+ influx is a major Ca2+ influx pathway in non‐excitable cells including endothelial cells and it has been reported to play a role in the thrombin‐induced Ca2+ signaling in endothelial cells. Recent studies have identified stromal interaction molecule 1 (STIM1) to function as a sensor of the store site Ca2+ content, thereby regulating the store‐operated Ca2+ influx. However, the functional role of STIM1 in the thrombin‐induced Ca2+ influx and NO production in endothelial cells still remains to be elucidated. Fura‐2 and diaminorhodamine‐4M fluorometry was utilized to evaluate the thrombin‐induced changes in cytosolic Ca2+ concentrations and NO production, respectively, in porcine aortic endothelial cells transfected with small interfering RNA (siRNA) targeted to STIM1. STIM1‐targeted siRNA suppressed the STIM1 expression and the thapsigargin‐induced Ca2+ influx. The degree of suppression of the STIM1 expression correlated well to the degree of suppression of the Ca2+ influx. The knockdown of STIM1 was associated with a substantial inhibition of the Ca2+ influx and a partial reduction of the NO production induced by thrombin. The thrombin‐induced Ca2+ influx exhibited the similar sensitivity toward the Ca2+ influx inhibitors to that seen with the thapsigargin‐induced Ca2+ influx. The present study provides the first evidence that STIM1 plays a critical role in the PAR1‐mediated Ca2+ influx and Ca2+‐dependent component of the NO production in endothelial cells. J. Cell. Biochem. 108: 499–507, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The Eu2+/Eu3+ mixed valence phosphor Ca2SiO2F2:Eu2+/Eu3+ was prepared using a solid‐state reaction synthesis method in a CO atmosphere, and the optical properties were investigated. The spectroscopic properties revealed that Ca2+ ions were occupied by both Eu2+ and Eu3+ ions in Ca2SiO2F2, and both ions were able to generate their characteristic emissions. A broad 5d → 4f Eu2+ band at ~470 nm and narrow 4f → 4f Eu3+ peaks upon excitation with n‐UV light were observed. The ratio between Eu2+ and Eu3+ emissions changed regularly, and the relative intensity of the red component from Eu3+ became systematically stronger with increasing overall Eu content. As a result, the emission color of these phosphors can be tunable from blue to pink under n‐UV light excitation.  相似文献   

17.
Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low‐frequency electromagnetic field (ELF‐EMF)‐induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF‐EMF for 60 min. significantly increased the Nav current (INa) densities by 62.5%. MT (5 μM) inhibited the ELF‐EMF‐induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady‐state activation curve was significantly shifted towards hyperpolarization by ELF‐EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF‐EMF. ELF‐EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK‐7 did not reduce the ELF‐EMF‐induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF‐EMF‐induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca2+ level, but it significantly elevated the intracellular Ca2+ level evoked by the high K+ stimulation in cerebellar GC that were either exposed or not exposed to ELF‐EMF. In the presence of ruthenium red, a ryanodine‐sensitive receptor blocker, the MT‐induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF‐EMF exposure through Ca2+ influx‐induced Ca2+ release.  相似文献   

18.
The relationship between the increase of intracellular Ca2+ and the release of arachidonic acid by bradykinin and pyrophosphonucleotides was studied in cultured mammary tumour cells, MMT060562. Bradykinin, ATP, UTP and UDP induced an increase of intracellular Ca2+ and the release of arachidonic acid from phospholipids into the extracellular fluid. Release of arachidonic acid was also induced by the application of the Ca2+ ionophore, A23187. Liberation of arachidonic acid by bradykinin and ATP was reduced by mepacrine, a blocker of phospholipase A2 and W-7, a calmodulin antagonist. It is suggested that the increase in cytosolic Ca2+-induced release of arachidonic acid occurs through activation of calmodulin-dependent phospholipase A2.  相似文献   

19.
Stomatal closure in response to abscisic acid depends on mechanisms that are mediated by intracellular [Ca2+] ([Ca2+]i), and also on mechanisms that are independent of [Ca2+]i in guard cells. In this study, we addressed three important questions with respect to these two predicted pathways in Arabidopsis thaliana. (i) How large is the relative abscisic acid (ABA)‐induced stomatal closure response in the [Ca2+]i‐elevation‐independent pathway? (ii) How do ABA‐insensitive mutants affect the [Ca2+]i‐elevation‐independent pathway? (iii) Does ABA enhance (prime) the Ca2+ sensitivity of anion and inward‐rectifying K+ channel regulation? We monitored stomatal responses to ABA while experimentally inhibiting [Ca2+]i elevations and clamping [Ca2+]i to resting levels. The absence of [Ca2+]i elevations was confirmed by ratiometric [Ca2+]i imaging experiments. ABA‐induced stomatal closure in the absence of [Ca2+]i elevations above the physiological resting [Ca2+]i showed only approximately 30% of the normal stomatal closure response, and was greatly slowed compared to the response in the presence of [Ca2+]i elevations. The ABA‐insensitive mutants ost1‐2, abi2‐1 and gca2 showed partial stomatal closure responses that correlate with [Ca2+]i‐dependent ABA signaling. Interestingly, patch‐clamp experiments showed that exposure of guard cells to ABA greatly enhances the ability of cytosolic Ca2+ to activate S‐type anion channels and down‐regulate inward‐rectifying K+ channels, providing strong evidence for a Ca2+ sensitivity priming hypothesis. The present study demonstrates and quantifies an attenuated and slowed ABA response when [Ca2+]i elevations are directly inhibited in guard cells. A minimal model is discussed, in which ABA enhances (primes) the [Ca2+]i sensitivity of stomatal closure mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号