首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Light is the crucial environmental signal for desiccation-tolerant cyanobacteria to activate photosynthesis and prepare for desiccation at dawn. However, the photobiological characteristics of desert cyanobacteria adaptation to one of the harshest habitats on Earth remain unresolved. In this study, we surveyed the genome of a subaerial desert cyanobacterium Nostoc flagelliforme and identified two phytochromes and seven cyanobacteriochromes (CBCRs) with one or more bilin-binding GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains. Biochemical and spectroscopic analyses of 69 purified GAF-containing proteins from recombinant phycocyanobilin (PCB), biliverdin or phycoerythrobilin-producing Escherichia coli indicated that nine of these proteins bind chromophores. Further investigation revealed that 11 GAFs form covalent adducts responsive to near-UV and visible light: eight GAFs contained PCB chromophores, three GAFs contained biliverdin chromophores and one contained the PCB isomer, phycoviolobilin. Interestingly, COO91_03972 is the first-ever reported GAF-only CBCR capable of sensing five wavelengths of light. Bioinformatics and biochemical analyses revealed that residue P132 of COO91_03972 is essential for chromophore binding to dual-cysteine CBCRs. Furthermore, the complement of N. flagelliforme CBCRs is enriched in red light sensors. We hypothesize that these sensors are critical for the acclimatization of N. flagelliforme to weak light environments at dawn.  相似文献   

4.
5.
6.
7.
The developmentally arrested life stage of the entomopathogenic nematode Steinernema feltiae is exposed to threats of survival, including desiccation. We adopted a comprehensive approach to the study of the molecular mechanisms of desiccation stress tolerance in S. feltiae IS-6. We identified, expressed sequence tags (ESTs) that are differentially expressed during desiccation stress in S. feltiae IS-6 infective juveniles using DNA subtractive hybridization. These ESTs included genes that are known to be stress related, genes that are homologous to hypothetical Caenorhabditis elegans proteins, and novel genes that may be involved in traits specific to S. feltiae. Expression pattern characterization revealed that all analyzed ESTs were induced during 8 and 24 hr of dehydration of S. feltiae IS-6. Our results unveiled some of the components of the genetic networks that are activated in S. feltiae IS-6 during dehydration and suggested a differing pattern of temporal regulation during nematode dehydration.  相似文献   

8.
Desiccation-tolerant cells must either protect their cellular components from desiccation-induced damage and/or repair it upon rewetting. Subcellular damage to the anhydrobiotic cyanobacterium Chroococcidiopsis sp. CCMEE 029 stored in the desiccated state for 4 years was evaluated at the single-cell level using fluorescent DNA strand breakage labelling, membrane integrity and potential related molecular probes, oxidant-sensing fluorochrome and redox dye. Covalent modifications of dried genomes were assessed by testing their suitability as PCR template. Results suggest that desiccation survivors avoid/and or limit genome fragmentation and genome covalent modifications, preserve intact plasma membranes and phycobiliprotein autofluorescence, exhibit spatially-reduced ROS accumulation and dehydrogenase activity upon rewetting. Damaged cells undergo genome fragmentation, loss of plasma membrane potential and integrity, phycobiliprotein bleaching, whole-cell ROS accumulation and lack respiratory activity upon rewetting. The co-occurrence of live and dead cells within dried aggregates of Chroococcidiopsis confirms that desiccation resistance is not a simple process and that subtle modifications to the cellular milieu are required to dry without dying. It rises also intriguing questions about the triggers of dead cells in response to drying. The capability of desiccation survivors to avoid and/or reduce subcellular damage, shows that protection mechanisms are relevant in the desiccation tolerance of this cyanobacterium. This paper is dedicated to the memory of E. Imre Friedmann and his wife Roseli, who pioneered researches on Chroococcidiopsis and life in desert environments.  相似文献   

9.
Hooijmaijers CA 《Planta》2008,227(6):1301-1310
This study tests the hypothesis that red-leaved gametophytes of the liverwort Jamesoniella colorata (Lehm.) Schiffn., which are found in relatively dry habitats, are more desiccation tolerant than their green counterparts, which are found in moister environments, through superior photoprotective systems. The potential role of red foliar pigments in relation to water deficits is investigated by measuring cell water-relations, oxidative damage and photosynthetic responses. The presence of red pigments, or other cellular constituents, did not affect cell water-relations during dehydration and thus appear not to be involved in cell osmotic regulation. During drying, both colour morphs showed a similar non-photochemical quenching activity and did not experience significant oxidative damage, as measured by the amounts of ascorbate, malondialdehyde and photosynthetic pigments. However, the levels of oxidative damage increased directly upon rewetting the gametophytes, especially in low light conditions (25 μmol m−2 s−1). The efficiency of photosystem II only recovered partially after severe water deficits in both phenotypes. However, the red gametophytes recovered faster and more completely from mild water deficits than did the greens. Moreover, they experienced significantly less photobleaching after rehydration in low light. It is suggested that red pigments and/or carotenoids in these gametophytes improve desiccation tolerance by alleviating photooxidative damage.  相似文献   

10.
11.
12.
The mechanisms involved in desiccation tolerance of lichens and their photobionts are still poorly understood. To better understand these mechanisms we have studied dehydration rate and desiccation time in Trebouxia, the most abundant chlorophytic photobiont in lichen. Our findings indicate that the drying rate has a profound effect on the recovery of photosynthetic activity of algae after rehydration, greater than the effects of desiccation duration. The basal fluorescence (Fo) values in desiccated algae were significantly higher after rapid dehydration, than after slow dehydration, suggesting higher levels of light energy dissipation in slow-dried algae. Higher values of PSII electron transport were recovered after rehydration of slow-dried Trebouxia erici compared to rapid-dried algae. The main component of non-photochemical quenching after slow dehydration was energy dependent (q E), whereas after fast dehydration it was photoinhibition (q I). Although q E seems to play a role during desiccation recovery, no significant variations were detected in the xanthophyll cycle components. Desiccation did not affect PSI functionality. Classical antioxidant activities like superoxide dismutase or peroxidase decreased during desiccation and early recovery. Dehydrins were detected in the lichen-forming algae T. erici and were constitutively expressed. There is probably a minimal period required to develop strategies which will facilitate transition to the desiccated state in this algae. In this process, the xanthophyll cycle and classical antioxidant mechanisms play a very limited role, if any. However, our results indicate that there is an alternative mechanism of light energy dissipation during desiccation, where activation is dependent on a sufficiently slow dehydration rate.  相似文献   

13.
14.
15.
The rhythms of life: circadian output pathways in Neurospora   总被引:1,自引:0,他引:1  
Research in Neurospora crassa pioneered the isolation of clock-controlled genes (ccgs), and more than 180 ccgs have been identified that function in various aspects of the fungal life cycle. Many clock-controlled genes are associated with damage repair, stress responses, intermediary metabolism, protein synthesis, and development. The expression of most of these genes peaks just before dawn and appears to prepare the cells for the desiccation, mutagenesis, and stress caused by sunlight. Progress on characterization of the output signaling pathways from the circadian oscillator mechanism to the ccgs is discussed. The authors also review evidence suggesting that, similar to other clock model organisms, a connection exists between the redox state of the cell and the Neurospora clock. The authors speculate that the clock system may sense not only light but also the redox potential of the cell through one of the PAS domains of the core clock components WC-1 or WC-2.  相似文献   

16.
Periods of desiccation and rewetting are regular, yet stressful events encountered by saltmarsh microbial communities. To examine the resistance and resilience of microbial biofilms to such stresses, sediments from saltmarsh creeks were allowed to desiccate for 23 days, followed by rewetting for 4 days, whereas control sediments were maintained under a natural tidal cycle. In the top 2 mm of the dry sediments, salinity increased steadily from 36 to 231 over 23 days, and returned to seawater salinity on rewetting. After 3 days, desiccated sediments had a lower chlorophyll a (Chl a) fluorescence signal as benthic diatoms ceased to migrate to the surface, with a recovery in cell migration and Chl a fluorescence on rewetting. Extracellular β-glucosidase and aminopeptidase activities decreased within the first week of drying, but increased sharply on rewetting. The bacterial community in the desiccating sediment changed significantly from the controls after 14 days of desiccation (salinity 144). Rewetting did not cause a return to the original community composition, but led to a further change. Pyrosequencing analysis of 16S rRNA genes amplified from the sediment revealed diverse microbial responses, for example desiccation enabled haloversatile Marinobacter species to increase their relative abundance, and thus take advantage of rewetting to grow rapidly and dominate the community. A temporal sequence of effects of desiccation and rewetting were thus observed, but the most notable feature was the overall resistance and resilience of the microbial community.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号