首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Despite growing evidence for parasite-mediated selection on the vertebrate major histocompatibility complex (MHC), little is known about variation in the bacterial parasite community within and among host populations or its influence on MHC evolution. In this study, we characterize variation in the parasitic bacterial community associated with Chinook salmon ( Oncorhynchus tshawytscha ) fry in five populations in British Columbia (BC), Canada across 2 years, and examine whether bacterial infections are a potential source of selection on the MHC. We found an unprecedented diversity of bacteria infecting fry with a total of 55 unique bacteria identified. Bacterial infection rates varied from 9% to 29% among populations and there was a significant isolation by distance relationship in bacterial community phylogenetic similarity across the populations. Spatial variation in the frequency of infections and in the phylogenetic similarity of bacterial communities may result in differential parasite-mediated selection at the MHC across populations. Across all populations, we found evidence of a heterozygote advantage at the MHC class II, which may be a source of balancing selection on this locus. Interestingly, a co-inertia analysis indicated only susceptibility associations between a few of the MHC class I and II alleles and specific bacterial parasites; there was no evidence that any of the alleles provided resistance to the bacteria. Our results reveal a complex bacterial community infecting populations of a fish and underscore the importance of considering the role of multiple pathogens in the evolution of host adaptations.  相似文献   

2.
Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad‐scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad‐scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin‐wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.  相似文献   

3.
4.
Local adaptation is a dynamic process driven by selection that can vary both in space and time. One important temporal adaptation for migratory animals is the time at which individuals return to breeding sites. Chinook salmon (Oncorhynchus tshawytscha) are excellent subjects for studying the genetic basis of temporal adaptation because their high seasonal homing fidelity promotes reproductive isolation leading to the formation of local populations across diverse environments. We tested for adaptive genetic differentiation between seasonal runs of Chinook salmon using two candidate loci; the circadian rhythm gene, OtsClock1b, and Ots515NWFSC, a microsatellite locus showing sequence identity to three salmonid genes central to reproductive development. We found significant evidence for two genetically distinct migratory runs in the Feather River, California (OtsClock1b: F(ST)=0.042, P=0.02; Ots515NWFSC: F(ST)=0.058, P=0.003). In contrast, the fall and threatened spring runs are genetically homogenous based on neutral microsatellite data (F(ST)=-0.0002). Similarly, two temporally divergent migratory runs of Chinook salmon from New Zealand are genetically differentiated based on polymorphisms in the candidate loci (OtsClock1b: F(ST)=0.083, P-value=0.001; Ots515NWFSC: F(ST)=0.095, P-value=0.000). We used an individual-based assignment method to confirm that these recently diverged populations originated from a single source in California. Tests for selective neutrality indicate that OtsClock1b and Ots515NWFSC exhibit substantial departures from neutral expectations in both systems. The large F(ST )estimates could therefore be the result of directional selection. Evidence presented here suggests that OtsClock1b and Ots515NWFSC may influence migration and spawning timing of Chinook salmon in these river systems.  相似文献   

5.
Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene‐targeted PCR‐based assay for next‐generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single‐gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.  相似文献   

6.
Atlantic salmon have been reared in the British Columbia, Canada aquaculture industry since the early 1980s. No breeding programmes spanned the entire production period and pedigree records were not kept for broodstocks prior to or since importation. Of the three recognized industry strains, two are of European ancestry ('Mowi' from Norway and 'McConnell' from Scotland) and one is of North American heritage ('Cascade' from Gaspe, Quebec). We evaluated the amount and distribution of genetic variation within industry broodstocks by surveying microsatellite variation at 11 loci in 20 broodstock groups sampled from major production facilities. Allelic richness averaged 10.9 (range 5.8-13.8), compared with a value of 20.3 obtained for a North American wild population. Pairwise genetic distances (D(S)) between samples within strains were generally less than those between strains, with samples attributed to the same strain clustering together in a neighbour-joining dendrogram. Nevertheless, average distances between samples within the European strains were high (0.41 for Mowi; 0.71 for McConnell) but lower (0.06) for the Cascade strain. The reduced intra-sample and increased intra-strain genetic variation observed for the BC domesticated samples compared with wild populations was similar to observations for European domesticated Atlantic salmon. Evidence of introgression of the Cascade strain into European broodstocks was provided by the presence of large Ssa202 alleles (confined to North America in wild populations) in some Mowi and McConnell samples. Introgression likely also contributed to the decreased intercontinental genetic distance for the domesticated samples of this study compared with that observed for wild populations.  相似文献   

7.
An approach frequently used to demonstrate a genetic basis for population-level phenotypic differences is to employ common garden rearing designs, where observed differences are assumed to be attributable to primarily additive genetic effects. Here, in two common garden experiments, we employed factorial breeding designs between wild and domestic, and among wild populations of Chinook salmon (Oncorhynchus tshawytscha). We measured the contribution of additive (V(A)) and maternal (V(M)) effects to the observed population differences for 17 life history and fitness-related traits. Our results show that, in general, maternal effects contribute more to phenotypic differences among populations than additive genetic effects. These results suggest that maternal effects are important in population phenotypic differentiation and also signify that the inclusion of the maternal source of variation is critical when employing models to test population differences in salmon, such as in local adaptation studies.  相似文献   

8.
Salmonids are an important cultural and ecological resource exhibiting near worldwide distribution between their native and introduced range. Previous research has generated linkage maps and genomic resources for several species as well as genome assemblies for two species. We first leveraged improvements in mapping and genotyping methods to create a dense linkage map for Chinook salmon Oncorhynchus tshawytscha by assembling family data from different sources. We successfully mapped 14 620 SNP loci including 2336 paralogs in subtelomeric regions. This improved map was then used as a foundation to integrate genomic resources for gene annotation and population genomic analyses. We anchored a total of 286 scaffolds from the Atlantic salmon genome to the linkage map to provide a framework for the placement 11 728 Chinook salmon ESTs. Previously identified thermotolerance QTL were found to colocalize with several candidate genes including HSP70, a gene known to be involved in thermal response, as well as its inhibitor. Multiple regions of the genome with elevated divergence between populations were also identified, and annotation of ESTs in these regions identified candidate genes for fitness related traits such as stress response, growth and behaviour. Collectively, these results demonstrate the utility of combining genomic resources with linkage maps to enhance evolutionary inferences.  相似文献   

9.
10.
A critical seasonal event for anadromous Chinook salmon (Oncorhynchus tshawytscha) is the time at which adults migrate from the ocean to breed in freshwater. We investigated whether allelic variation at the circadian rhythm genes, OtsClock1a and OtsClock1b, underlies genetic control of migration timing among 42 populations in North America. We identified eight length variants of the functionally important polyglutamine repeat motif (PolyQ) of OtsClock1b while OtsClock1a PolyQ was highly conserved. We found evidence of a latitudinal cline in average allele length and frequency of the two most common OtsClock1b alleles. The shorter 335 bp allele increases in frequency with decreasing latitude while the longer 359 bp allele increases in frequency at higher latitudes. Comparison to 13 microsatellite loci showed that 335 and 359 bp deviate significantly from neutral expectations. Furthermore, a hierarchical gene diversity analysis based on OtsClock1b PolyQ variation revealed that run timing explains 40.9 per cent of the overall genetic variance among populations. By contrast, an analysis based on 13 microsatellite loci showed that run timing explains only 13.2 per cent of the overall genetic variance. Our findings suggest that length polymorphisms in OtsClock1b PolyQ may be maintained by selection and reflect an adaptation to ecological factors correlated with latitude, such as the seasonally changing day length.  相似文献   

11.
We used electrophoresis to determine the number and characteristics of genetically distinct stocks of odd-year pink salmon in Washington and southern British Columbia. We analysed 5128 fish from 52 collections (taken in 1985, 1987 and 1989). We observed genetic variation at 53 enzyme-coding loci, 19 of which were polymorphic at the Po-95 level in at least one stock. Genotypic proportions conformed to Hardy-Weinberg expectations in nearly all cases. The genetic profiles of individual populations were generally stable over the three cycle years studied. Significant differences in allele frequencies at sAAT-3* , PEP-LT* and PGDH* for several stocks were, however, noted between this study and previously reported data for pink salmon. We used G-tests and cluster analysis of genetic distances to evaluate genetic interrelationships among collections and to define genetically distinct stocks. Differentiation among stocks exhibited a clear geographic pattern with three major clusters of stocks recognizable: (1) Hood Canal and Washington Strait of Juan de Fuca stocks, (2) Puget Sound, Fraser River, and southern Canada South Coast stocks, and (3) northern Canada South Coast stocks and Canada North Coast stocks. Computer simulations using 14 and 28 loci, and sample sizes of 15C600, demonstrated that accurate estimates of stock-group composition could be obtained for pink salmon fisheries having a considerable range of stock compositions. The simulations revealed that approximately 50% fewer fish were required to obtain a given level of precision of stock group composition estimates with 28 loci as with the set of 14 loci used in previous investigations.  相似文献   

12.
The energetic cost for juvenile Chinook salmon Oncorhynchus tshawytscha to forage in habitats of different salinity and depth was quantified using a behavioural titration based on ideal free distribution theory. When given a choice between freshwater habitats of different depths (>0·83 or <0·83 m), a greater proportion of fish used the deeper habitat. When the deeper habitat was saltwater, the proportion of fish using it increased. When food was added to both the shallow freshwater and deep saline habitats, however, fish distribution returned to that observed when both habitats were fresh water. This indicates that the preference for deep saline habitats during the stratified phase was driven by some benefit associated with residency in deeper water, rather than salinity. The low perceived cost of low salinity might be in part due to the fish's ability to minimize this cost by only making brief forays into the alternate freshwater habitat. When the food ration delivered to the more costly, shallow habitat was 50% greater than that delivered to the less costly, deep habitat, fish distributed themselves equally between the two habitats, presumably because of equal net benefits. This study demonstrates that juvenile Chinook salmon prefer deep saline habitat to shallow freshwater habitats but will make brief forays into the freshwater habitat if food availability is sufficiently high.  相似文献   

13.
Estuaries play an important role as nurseries and migration corridors for Chinook salmon and other fishes. The invasive New Zealand mudsnail, Potamopyrgus antipodarum (Gray, 1843), has been noted in the Columbia River Estuary and other estuaries in the western USA, yet no studies have addressed the estuarine impacts of this invader. Our data show P. antipodarum is currently found in five peripheral bays and many tributaries of the Columbia River Estuary, where it can constitute a major portion of the benthic invertebrate biomass and where it co-occurs with native amphipod species. We review the history of the P. antipodarum invasion in the Columbia River Estuary and discuss potential impacts on estuarine food webs. We also report the first occurrence of P. antipodarum in the diet of juvenile Chinook salmon from the Columbia River Estuary. Although present in Chinook diets at very low frequencies, our observations of P. antipodarum in Chinook gut contents may represent early stages of food web change due to the establishment of dense estuarine snail populations. Additional research is needed to determine the effects of P. antipodarum on benthic resources, native benthic invertebrates, and benthic predators. We encourage biologists working in western USA estuaries to be alert to the possibility of encountering P. antipodarum in benthic habitats and predator diets.
Jeannette E. ZamonEmail:
  相似文献   

14.
Lin JE  Hilborn R  Quinn TP  Hauser L 《Molecular ecology》2011,20(23):4925-4937
Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors.  相似文献   

15.
We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural‐origin and 11594 hatchery‐origin fish, we estimated that the rate of homing to natal tributaries by natural‐origin fish ranged from 0% to 99% depending on the tributary. Hatchery‐origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural‐origin fish (71% compared to 96%). For hatchery‐released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural‐origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery‐produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural‐origin fish strayed from their natal tributary. Indirect estimates of gene flow based on FST statistics were correlated with but higher than the estimates from the parentage data. Tributary‐specific estimates of effective population size were also correlated with the number of spawners in each tributary.  相似文献   

16.
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out‐migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post‐restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density‐dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.  相似文献   

17.
Ford MJ 《Molecular ecology》2000,9(7):843-855
This paper describes DNA sequence variation within and among four populations of chinook salmon (Oncorhynchus tshawytscha) at the transferrin, somatolactin and p53 genes. Patterns of variation among salmon species at the transferrin gene have been hypothesized to be shaped by positive natural selection for new alleles because the rate of nonsynonymous substitution is significantly greater than the rate of synonymous substitution. The twin goals of this study were to determine if the history of selection among salmon species at the transferrin gene is also reflected in patterns of intraspecific variation in chinook salmon, and to look for evidence of local adaptation at the transferrin gene by comparing patterns of nonsynonymous and synonymous variation among chinook salmon populations. The analyses presented here show that unlike patterns of variation between species, there is no evidence of greater differentiation among chinook salmon populations at nonsynonymous compared to synonymous sites. There is also no evidence of a reduction of within-species variation due to the hitchhiking effect at the transferrin gene, although in some populations nonsynonymous and synonymous derived mutations are both at higher frequencies than expected under a simple neutral model. Population size weighted selection coefficients (4Ns) that are consistent with both the inter and intraspecific data range from approximately 10 to approximately 235, and imply that between 1 and 40% of new nonsynonymous mutations at the transferrin gene have been beneficial.  相似文献   

18.
Genetics data have provided unprecedented insights into evolutionary aspects of colonization by non‐native populations. Yet, our understanding of how artificial (human‐mediated) and natural dispersal pathways of non‐native individuals influence genetic metrics, evolution of genetic structure, and admixture remains elusive. We capitalize on the widespread colonization of Chinook salmon Oncorhynchus tshawytscha in South America, mediated by both dispersal pathways, to address these issues using data from a panel of polymorphic SNPs. First, genetic diversity and the number of effective breeders (Nb) were higher among artificial than natural populations. Contemporary gene flow was common between adjacent artificial and natural and adjacent natural populations, but uncommon between geographically distant populations. Second, genetic structure revealed four distinct clusters throughout the Chinook salmon distributional range with varying levels of genetic connectivity. Isolation by distance resulted from weak differentiation between adjacent artificial and natural and between natural populations, with strong differentiation between distant Pacific Ocean and Atlantic Ocean populations, which experienced strong genetic drift. Third, genetic mixture analyses revealed the presence of at least six donor geographic regions from North America, some of which likely hybridized as a result of multiple introductions. Relative propagule pressure or the proportion of Chinook salmon propagules introduced from various geographic regions according to government records significantly influenced genetic mixtures for two of three artificial populations. Our findings support a model of colonization in which high‐diversity artificial populations established first; some of these populations exhibited significant admixture resulting from propagule pressure. Low‐diversity natural populations were likely subsequently founded from a reduced number of individuals.  相似文献   

19.
A trypsin fraction was isolated from the pyloric ceca of New Zealand farmed chinook salmon (Oncorhynchus tshawytscha) by ammonium sulfate fractionation, acetone precipitation and affinity chromatography. The chinook salmon enzyme hydrolyzed the trypsin-specific synthetic substrate benzoyl-dl-arginine-p-nitroanilide (dl-BAPNA), and was inhibited by the general serine protease inhibitor phenyl methyl sulfonyl fluoride (PMSF), and also by the specific trypsin inhibitors — soybean trypsin inhibitor (SBTI) and benzamidine. The enzyme was active over a broad pH range (from 7.5 to at least pH 10.0) at 25 °C and was stable from pH 4.0 to pH 10.0 when incubated at 20 °C, with a maximum at pH 8.0. The optimum temperature for the hydrolysis of dl-BAPNA by the chinook salmon enzyme was 60 °C, however, the enzyme was unstable at temperatures above 40 °C. The molecular mass of the chinook salmon trypsin was estimated as 28 kDa by SDS–PAGE.  相似文献   

20.
Three microsatellite loci were used to examine genetic variation among 16 coho salmon ( Oncorhynchus kisutch ) populations within the Fraser River drainage system, in British Columbia, Canada. Each locus was highly polymorphic with 30 alleles at the Ots 101 locus, 15 alleles at the Ots 3 locus and 38 alleles at the Ots 103 locus. Average observed heterozygosities were 86.1%, 70%, and 56.1%, respectively. With the exception of the Dunn and Lemieux River populations, Chi-square tests and F ST values indicated that all populations had significantly different allele frequencies. Two distinct population groups within the Fraser River drainage were observed. Lower Fraser River populations were strongly differentiated from populations spawning in the upper Fraser River, which includes the Thompson River (a tributary flowing into the upper Fraser) and the portion of the Fraser River beyond the precipitous Fraser River canyon. This regional population structure may have resulted from colonization of the upper and lower Fraser River regions by different founder populations following Pleistocene glaciation, and be maintained by adaptive differences between the two groups of coho salmon. Coho salmon populations in the upper Fraser and Thompson River drainages form an evolutionarily significant unit (ESU) of importance for conservation of biodiversity in coho salmon. Microsatellite DNA loci show promise as technically simple and highly informative genetic markers for coho salmon population management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号