首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cuckoo eggs are renowned for their mimicry of different host species, leading to the evolution of host‐specific races (or ‘gentes’) defined by egg colour and pattern. This study aims to test the prediction that another property of parasitic eggs, namely shell strength, might also have experienced divergent selection within cuckoo species. Host races of the common cuckoo Cuculus canorus encountering stronger host rejection have thicker‐shelled eggs than those parasitising less discriminating species, as expected if egg strengthening discourages host rejection. Moreover, in the diederik cuckoo Chrysococcyx caprius, eggshell thickness was correlated across cuckoo gentes and host species, as expected if eggshell strength has been involved in coevolutionary interactions. This is the first report of host‐specific differences in cuckoo egg properties other than colour and pattern and lends correlational support to the hypothesis that the strong eggshells of brood parasites are an adaptation to reduce host rejection.  相似文献   

2.
Recent evidence suggests that blue‐green coloration of bird eggshells may be related to female and/or egg phenotypic quality, and that such colour may affect parental effort and therefore the nutritional environment of developing nestlings. Here we suggest that these relationships and the signal function of eggshell coloration would affect the outcome of coevolution between avian brood parasites and their hosts in at least three different non‐exclusive evolutionary pathways. First, by laying blue‐green coloured eggs, cuckoo females may exploit possible sensory biases of their hosts, constraining the evolution of parasitic egg recognition, and thus avoid rejection. Second, because of the relatively high costs of laying blue eggs, cuckoo females may be limited in their ability to mimic costly blue‐green eggs of their hosts because cuckoo females lay many more eggs than their hosts. Furthermore, costs associated with foreign egg recognition errors would be relatively higher for hosts laying blue eggs. Third, cuckoos may use coloration of host eggs for selecting individuals or specific hosts of appropriate phenotypic quality (i.e. parental abilities). We here explored some predictions emerging from the above scenarios and found partial support for two of them by studying egg coloration of European cuckoos (Cuculus canorus) and that of their 25 main hosts, as well as parasitism and rejection rate of hosts. Cuckoo hosts parasitized with more blue, green, and ultraviolet cuckoo eggs, or those laying more blue‐green eggs, were more prone to accept experimental parasitism with artificial cuckoo eggs. In addition, coloration of cuckoo eggs is more variable when parasitizing hosts laying bluer‐greener eggs, even after controlling for the effect of host egg coloration (i.e. degree of egg matching). Globally, our results are consistent with the proposed hypothesis that host egg traits that are related to phenotypic quality of hosts, such as egg coloration, may have important implications for the coevolutionary interaction between hosts and brood parasites. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 154–168.  相似文献   

3.
Brood parasites rely entirely on the parental care of host species to raise the parasitic nestlings until independence. The reproductive success of avian brood parasites depends on finding host nests at a suitable stage (i.e. during egg laying) for parasitism and weakly defensive (i.e. non‐ejector) hosts. Finding appropriate nests for parasitism may, however, vary depending on ecological conditions, including parasite abundance in the area, which also varies from one year to another and therefore may influence coevolutionary relationships between brood parasites and their hosts. In this scenario, we explored: 1) the degree of laying synchronization between great spotted cuckoos Clamator glandarius and magpies Pica pica during two breeding seasons, which varied in the level of selection pressure due to brood parasitism (i.e. parasitism rate); 2) magpie responses to natural parasitism in the pre‐laying period and successfulness of parasitic eggs laid at this stage; and 3) magpie responses to experimental parasitism performed at different breeding stages. We found that, during the year of higher parasitism rate, there was an increase in the percentage of parasitic eggs laid before magpies started laying. However, the synchronization of laying was poor both years regardless of the differences in the parasitism rate. The ejection rate was significantly higher during the pre‐egg‐laying and the post‐hatching stages than during the laying stage, and hatching success of parasitic eggs laid during the pre‐egg‐laying stage was zero. Thus, non‐synchronized parasitic eggs are wasted and therefore poor synchronization should be penalized by natural selection. We discuss four different hypotheses explaining poor synchronization.  相似文献   

4.
In the arms race between avian brood parasites and their hosts, several adaptations and counter‐adaptations have evolved. The most prominent host defence is rejection of parasitic eggs. We experimentally parasitized nests of 10 potential host species breeding in sympatry with four different cuckoo species in an area in Bangladesh using differently coloured model eggs to test host responses. In four species we introduced both mimetic and non‐mimetic eggs. Black Drongos Dicrurus macrocercus, hosts of the Indian Cuckoo Cuculus micropterus, rejected all model eggs. Common Mynas Acridotheres tristis and Jungle Babblers Turdoides striata accepted all eggs regardless of mimicry. These two species are parasitized by Asian Koels Eudynamys scolopaceus, Common Hawk‐cuckoo Hierococcyx varius and, in the case of Jungle Babblers, Jacobin Cuckoos Clamator jacobinus. Pied Mynas Gracupica contra, with no records of parasitism in our study area, also accepted all eggs regardless of mimicry. In the six remaining species, all of which lay spotted eggs, we introduced only non‐mimetic eggs. Black‐hooded Orioles Oriolus xanthornus rejected all model eggs, even though we have found no records of natural parasitism. Long‐tailed Shrikes Lanius schach and House Crows Corvus splendens, hosts of Asian Koels, rejected 75 and 9.1% of model eggs, respectively. Large‐billed Crows Corvus macrorhynchos, apparently not used as hosts in our study area, accepted all blue but rejected all brown model eggs. Oriental Magpie‐Robins Copsychus saularis and Red‐vented Bulbuls Pycnonotus cafer accepted all non‐mimetic model eggs. In Black Drongos, Long‐tailed Shrikes and Black‐hooded Orioles, all model eggs were ejected within 24 h of introduction. The results show considerable variation in egg rejection rates among various species, providing baseline data for further investigation of co‐evolutionary interactions between brood parasites and hosts in this region.  相似文献   

5.
In coevolutionary arms-races, reciprocal ecological interactions and their fitness impacts shape the course of phenotypic evolution. The classic example of avian host–brood parasite interactions selects for host recognition and rejection of increasingly mimetic foreign eggs. An essential component of perceptual mimicry is that parasitic eggs escape detection by host sensory systems, yet there is no direct evidence that the avian visual system covaries with parasitic egg recognition or mimicry. Here, we used eye size measurements collected from preserved museum specimens as a metric of the avian visual system for species involved in host–brood parasite interactions. We discovered that (i) hosts had smaller eyes compared with non-hosts, (ii) parasites had larger eyes compared with hosts before but not after phylogenetic corrections, perhaps owing to the limited number of independent evolutionary origins of obligate brood parasitism, (iii) egg rejection in hosts with non-mimetic parasitic eggs positively correlated with eye size, and (iv) eye size was positively associated with increased avian-perceived host–parasite eggshell similarity. These results imply that both host-use by parasites and anti-parasitic responses by hosts covary with a metric of the visual system across relevant bird species, providing comparative evidence for coevolutionary patterns of host and brood parasite sensory systems.  相似文献   

6.
Three species of brood parasites are increasingly being recorded as transoceanic vagrants in the Northern Hemisphere, including two Cuculus cuckoos from Asia to North America and a Molothrus cowbird from North America to Eurasia. Vagrancy patterns suggest that their establishment on new continents is feasible, possibly as a consequence of recent range increases in response to a warming climate. The impacts of invasive brood parasites are predicted to differ between continents because many host species of cowbirds in North America lack egg rejection defenses against native and presumably also against invasive parasites, whereas many hosts of Eurasian cuckoos frequently reject non‐mimetic, and even some mimetic, parasitic eggs from their nests. During the 2014 breeding season, we tested the responses of native egg‐rejecter songbirds to model eggs matching in size and color the eggs of two potentially invasive brood parasites. American Robins (Turdus migratorius) are among the few rejecters of the eggs of Brown‐headed Cowbirds (M. ater), sympatric brood parasites. In our experiments, robins rejected one type of model eggs of a Common Cuckoo (C. canorus) host‐race, but accepted model eggs of a second cuckoo host‐race as well as robin‐mimetic control eggs. Common Redstarts (Phoenicurus phoenicurus), frequent hosts of Common Cuckoos in Eurasia, rejected ~50% of model Brown‐headed Cowbird eggs and accepted most redstart‐mimetic control eggs. Our results suggest that even though some hosts have evolved egg‐rejection defenses against native brood parasites, the invasion of brood parasites into new continents may negatively impact both naïve accepter and coevolved rejecter songbirds in the Northern Hemisphere.  相似文献   

7.
We studied egg‐pecking behaviour in males and females of three cowbird species: the shiny cowbird (Molothrus bonariensis), a host generalist brood parasite, the screaming cowbird (M. rufoaxillaris), a host specialist brood parasite, and the bay‐winged cowbird (Agelaioides badius), a non‐parasitic species. We conducted three experiments in which we offered each bird an artificial nest with two plaster eggs and recorded whether egg pecking occurred and the number of pecks on each egg. In expt 1, we tested if there were species and sex differences in egg‐pecking behaviour by offering the birds two spotted eggs of similar pattern. Shiny and screaming cowbirds responded in 40.3% and 44% of the trials, respectively, with females and males presenting similar levels of response. In contrast, bay‐winged cowbirds did not show any response. In expt 2, we tested if shiny cowbirds responded differentially when they faced a choice between one host and one shiny cowbird egg, while in expt 3, we tested if screaming cowbirds responded differentially when they faced a choice between one shiny and one screaming cowbird egg. Shiny cowbirds pecked preferentially host eggs while screaming cowbirds pecked more frequently shiny cowbird eggs. Our results show that egg‐pecking behaviour is present in both sexes of parasitic cowbirds, but not in non‐parasitic birds, and that parasitic cowbirds can discriminate between eggs of their own species and the eggs of their hosts or other brood parasites.  相似文献   

8.
Maxwell T. Hincke 《Proteomics》2013,13(23-24):3369-3370
The avian eggshell is one of the fastest calcifying processes known and represents a unique model for studying biomineralization. Eggshell strength is a crucial economic trait for table egg production, and ensures that a safe egg reaches the consumer kitchen. However, a common toolkit for eggshell mineralization has not yet been defined. In this issue, label‐free MS‐based protein quantification technology has been used by Sun et al. (Proteomics 2013, 13, 3523–3536) to detect differences in protein abundance between eggshell matrix from strong and weak eggs and between the corresponding uterine fluids bathing strong and weak eggs. Proteins associated with the formation of strong eggshells are identified, which are now candidates for further investigations to define the regulatory relationship between specific eggshell matrix proteins and calcite crystal texture.  相似文献   

9.
Avian brood parasites lay their eggs in other birds' nests and impose considerable fitness costs on their hosts. Historically and scientifically, the best studied example of circumventing host defences is the mimicry of host eggshell colour by the common cuckoo (Cuculus canorus). Yet the chemical basis of eggshell colour similarity, which impacts hosts' tolerance towards parasitic eggs, remains unknown. We tested the alternative scenarios that (i) cuckoos replicate host egg pigment chemistry, or (ii) cuckoos use alternative mechanisms to produce a similar perceptual effect to mimic host egg appearance. In parallel with patterns of similarity in avian-perceived colour mimicry, the concentrations of the two key eggshell pigments, biliverdin and protoporphyrin, were most similar between the cuckoo host-races and their respective hosts. Thus, the chemical basis of avian host-parasite egg colour mimicry is evolutionarily conserved, but also intraspecifically flexible. These analyses of pigment composition reveal a novel proximate dimension of coevolutionary interactions between avian brood parasites and hosts, and imply that alternative phenotypes may arise by the modifications of already existing biochemical and physiological mechanisms and pathways.  相似文献   

10.
Two main mechanisms of egg rejection, the main defence of hosts against brood parasites, have been described: ejection and desertion. Desertion of the parasitized nest is much more costly and is usually exhibited by small‐sized host species unable to remove the parasitic egg. However, nest desertion is frequently assumed to be an anti‐parasite strategy even in medium or large‐sized host species. This assumption should be considered with caution because: 1) large‐sized hosts able to eject the parasitic egg should eject it rather than desert the nest, and 2) breeding birds may desert their nests in response to different disturbances other than brood parasitism. This problem is especially important in the common blackbird Turdus merula because this is a medium‐sized species, potential host of the common cuckoo Cuculus canorus, in which desertion has been frequently reported as a response to cuckoo egg models. Here, we seek to determine whether nest desertion can be considered a response unequivocally directed to the parasitic egg in medium‐sized hosts using the blackbird as the study species. In an experimental study in which we have manipulated levels of mimicry and size of experimental eggs, we have found that both colour (mimetic and non‐mimetic; at least for human vision) and size (small, medium, and large) significantly affected ejection rates but not nest desertion rates. In fact, although large eggs disproportionally provoked nest desertion more frequently than did small or medium‐sized eggs, cuckoo‐sized parasitic eggs were not deserted allowing us to conclude that desertion is unlikely to be an adaptive response to brood parasitism at least for this species.  相似文献   

11.
Brood parasites lay unusually strong eggs, presumably to prevent puncture ejection of the eggs by hosts. However, it has been suggested that eggs of some parasitic cuckoos have normal strength. This suggestion was based on the eggshell thickness and shape of these eggs. Here, we propose that there may be other structural adaptations (such as increased eggshell density) that make the cuckoo eggs unusually strong. In this study, we compared the eggshell density of parasitic cuckoos to the eggshell density of two control groups, non-parasitic cuckoos and a sample of non-passerine species. The comparisons to both control groups demonstrated that the parasitic cuckoos have eggshells of significantly higher density than would be expected for their size. Our results support the hypothesis that the higher eggshell density is an alternative mechanism by which some cuckoos increase the strength of their eggs.  相似文献   

12.
Factors related to bacterial environment of nests are of primary interest for understanding the causes of embryo infection and the evolution of antimicrobial defensive traits in birds. Nest visitors such as parasites could act as vectors for bacteria and/or affect the hygienic conditions of nests and hence influence the nest bacterial environment. In the present study, we explored some predictions of this hypothetical scenario in the great spotted cuckoo (Clamator glandarius)–magpie (Pica pica) system of brood parasitism. Great spotted cuckoos visit the nests of their magpie hosts and frequently damage some of the host eggs when laying eggs or on subsequent visits. Therefore, it represents a good system for testing the effect of nest visitors on the bacterial environment of nests. In accordance with this hypothesis, we found that the bacterial load of magpie eggshells was greater in parasitized nests, which may suggest that brood parasitism increases the probability of bacterial infection of magpie eggs. Moreover, comparisons of bacterial loads of cuckoo and magpie eggs revealed that: (1) cuckoo eggshells harboured lower bacterial densities than those of their magpie hosts in the same nests and (2) the prevalence of bacteria inside unhatched eggs was higher for magpies than for great spotted cuckoos. These interspecific differences were predicted because brood parasitic eggs (but not host eggs) always experience the bacterial environments of parasitized nests. Therefore, the results obtained in the present study suggest that parasitic eggs are better adapted to environments with a high risk of bacterial contamination than those of their magpie hosts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 836–848.  相似文献   

13.
Obligate brood parasites only account for 1% of birds in the world, but utilize a great variety of avian species as hosts. Host switch theory predicts that parasites should shift from one host to another during the long‐term arms race with hosts whenever such a shift would be facilitated by similarity in ecology and distribution. However, few studies have been conducted to address this puzzle because it is extremely difficult for humans to witness such host shifts during the long‐lasting process of evolution. Here we adopted an alternative way to understand host switch behaviour of brood parasites by comparing egg colour variation, cuckoo egg mimicry and egg recognition capacity between two sympatric hosts, the Chinese babax (Babax lanceolatus) and the white‐browed laughing thrush (Garrulax sannio), which are both parasitized by the large hawk‐cuckoo (Cuculus sparverioides). The babax lays dark blue eggs whilst the laughing thrush lays white to pale blue eggs, and the large hawk‐cuckoo parasitizes them by laying eggs that optimally match laughing thrush eggs according to avian vision. The laughing thrush possesses a greater capacity of egg recognition than the babax because it rejected all non‐mimetic eggs while the babax is an intermediate rejecter. Furthermore, all the nest characteristics measured were similar in these two host species with no statistical significant differences. These results are consistent with the hypothesis that the white‐browed laughing thrush is the original and main host species that has a longer coevolutionary interaction with the large hawk‐cuckoo than the Chinese babax, which is a recent host acquired through a host switch by the hawk‐cuckoo. We discuss the possible outcome of the interaction between the large hawk‐cuckoo and these two host species, and emphasize that host switch behaviour in brood parasites is more likely an adaptation to expand the range of host species rather than a change in host species favoring an increase in reproductive output. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

14.
The intensity of selection exerted by brood parasites on their hosts depends on the proportion of nests that are parasitized and the fitness costs of parasitism. Nest detection by brood parasites influences the probability of parasitism, and we propose that the difficulty faced by brood parasites of finding nests on the ground may make ground‐nesting species subject to lower levels of parasitism, causing a reduction in levels of defence compared with species breeding in shrubs, trees and elsewhere above the ground. We tested the prediction that the rejection rate of Common Cuckoo Cuculus canorus eggs by hosts is inversely related to the frequency with which they build nests on the ground, both at local and at continental scales. First, we used estimates of the rejection rate of non‐mimetic model eggs experimentally introduced into the nests of 26 potential host species breeding in the Sierra Nevada Mountains of southern Spain. Most species tested in the Sierra Nevada showed high rejection rates of both mimetic and non‐mimetic eggs, whereas the European Robin Erithacus rubecula, with a low rejection rate, was the only species that was regularly parasitized. At the continental scale we used all available published information on rejection rates of non‐mimetic models by European hosts of the Common Cuckoo. The frequency of ground‐nesting explained interspecific variation in rejection rate of non‐mimetic model eggs both for the species tested in the Sierra Nevada and for all European hosts after controlling for all other life‐history variables known to affect rejection rates. An effect of the abundance of trees in a particular habitat, previously shown to affect parasitism by the Common Cuckoo, was only apparent from analyses of continental‐scale data and not from the Sierra Nevada mountains, suggesting that particular properties of mountainous areas affect Common Cuckoo parasitism. Ground‐nesting species showed lower rejection rates than species breeding in bushes or trees. These results suggest that species nesting on the ground may have suffered lower parasitism pressures in their historical coevolutionary interactions with the Common Cuckoo.  相似文献   

15.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

16.
The brown‐headed cowbird Molothrus ater is a brood‐parasite that lays eggs in nests of a wide range of host species, including the closely‐related red‐winged blackbird Agelaius phoeniceus and the dickcissel Spiza americana. Although cowbird eggs have accelerated development and hatch sooner than similar‐sized host eggs, this development takes place within a thickened eggshell that could impede gas flux to the developing embryo. We tested the hypothesis that the accelerated development of the cowbird embryo relative to hosts is enabled by an increase in eggshell porosity that allows increased fluxes of respiratory gases to and from the developing embryo. We found cowbird eggshell thickness was significantly greater than the eggshells of these two common hosts. Although the number of pores per egg was similar among all three species, the total pore area per egg in cowbirds was significantly greater than that of either host, despite having a smaller eggshell surface area than the red‐winged blackbird. Cowbird egg pore area was 1.9×larger than that of the red‐winged blackbird. Cowbird eggshells had a significantly greater gas flux than those of the red‐winged blackbird and the dickcissel. When conductance was normalized to published values of egg mass, cowbird eggs had a higher mass‐specific conductance than red‐winged blackbird or dickcissel eggs. These results are consistent with the hypothesis that the rapid development of brown‐headed cowbird embryos is facilitated by increased eggshell porosity, and that changes in eggshell porosity represent an adaptation that enables cowbird eggs to hatch earlier than equivalently‐sized host eggs.  相似文献   

17.
Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host’s ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins’ behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch.  相似文献   

18.
Nestlings of non‐evicting avian brood‐parasites have to compete for food with foster parents' own nestlings. The outcome of these competitive contests is determined mainly by body size differences between parasitic and host nestlings. As part of the coevolutionary arms race between brood parasites and their hosts at the nestling stage, it has been reported that some host foster parents discriminate against parasitic chicks and are reluctant to feed them. Here, by experimentally creating size‐matched broods of different composition (only magpie Pica pica chicks, only great spotted cuckoo Clamator glandarius chicks or mixed broods), we show that great spotted cuckoo chicks starved in 20.2 per cent (17 of 84) of the parasitized magpie nests even in absence of size asymmetries, while in none (0 of 72) of the nests a magpie chick starved. As far as we know, this is the first record of non‐evictor brood parasitic nestlings starving without being smaller than their host nestmates in a frequently used host species. Nest composition had no effect on chick starvation. The cuckoo nestling starved even in two of the nests occupied by only one cuckoo chick. Our results could be explained by (1) magpies being reluctant to feed cuckoo chicks; (2) parasitic chicks receiving lower‐quality food items or cuckoo nestlings being sensitive to some particular component of the diet (e.g. cereal grains); and (3) the existence of cuckoo chick discrimination ability by magpie foster parents.  相似文献   

19.
Avian hosts of brood parasites can evolve anti‐parasitic defenses to recognize and reject foreign eggs from their nests. Theory predicts that higher inter‐clutch and lower intra‐clutch variation in egg appearance facilitates hosts to detect parasitic eggs as egg‐rejection mainly depends on the appearance of the egg. Therefore, we predict that egg patterns and rejection rates will differ when hosts face different intensity of cuckoo parasitism. We tested this prediction in two populations of the plain prinia Prinia inornata: Guangxi in mainland China with high diversity and density of cuckoo species, and Taiwan where there is only one breeding cuckoo species, the oriental cuckoo Cuculus optatus. As expected, egg patterns were similar within clutches but different among clutches (polymorphic eggs) in the mainland population, while the island population produced more uniform egg morphs. Furthermore, the mainland population showed a high rate of egg rejection, while the island population exhibited dramatically reduced egg grasp‐rejection ability in the absence of parasitism by the common cuckoo Cuculus canorus. Our study suggests that prinias show lower intra‐clutch consistency in egg colour and lose egg‐rejecting ability under relaxed selection pressure from brood parasitism.  相似文献   

20.
Given the high costs of brood parasitism, avian hosts have adopted different defences to counteract parasites by ejecting the foreign egg or by deserting the parasitized nest. These responses depend mainly on the relative size of the host compared with the parasitic egg. Small hosts must deal with an egg considerably larger than their own, so nest desertion becomes the only possible method of egg rejection in these cases. The use of artificial model eggs made of hard material in egg‐recognition experiments has been criticized because hard eggs underestimate the frequency of egg ejection. However, no available studies have investigated the effect of softer material. Here, we test the potential effect of size of dummy parasitic eggs in relation to egg‐rejection behaviour (egg ejection and nest desertion rates) in Western Bonelli's Warbler Phylloscopus bonelli, a small host, using plasticine non‐mimetic eggs of three different sizes. In addition, we tested the potential effect of material, comparing ejection and desertion responses between real and plasticine eggs. As predicted, small eggs were always ejected, whereas nest desertion occurred more frequently with large eggs, thus suggesting that nest desertion occurs because of the constraints imposed by the large eggs. We found that plasticine may misrepresent the responses to experimental parasitism, at least in small host species, because this material facilitates egg ejection, provoking a decrease in nest desertion rate. Thus, particular caution is needed in the interpretation of the results in egg‐rejection experiments performed using dummy eggs made of soft materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号