首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By altering its flight altitude, a bird can change the atmospheric conditions it experiences during migration. Although many factors may influence a bird's choice of altitude, wind is generally accepted as being the most influential. However, the influence of wind is not clearly understood, particularly outside the trade‐wind zone, and other factors may play a role. We used operational weather radar to measure the flight altitudes of nocturnally migrating birds during spring and autumn in the Netherlands. We first assessed whether the nocturnal altitudinal distribution of proportional bird density could be explained by the vertical distribution of wind support using three different methods. We then used generalized additive models to assess which atmospheric variables, in addition to altitude, best explained variability in proportional bird density per altitudinal layer each night. Migrants generally remained at low altitudes, and flight altitude explained 52 and 73% of the observed variability in proportional bird density in spring and autumn, respectively. Overall, there were weak correlations between altitudinal distributions of wind support and proportional bird density. Improving tailwind support with height increased the probability of birds climbing to higher altitude, but when birds did fly higher than normal, they generally concentrated around the lowest altitude with acceptable wind conditions. The generalized additive model analysis also indicated an influence of temperature on flight altitudes, suggesting that birds avoided colder layers. These findings suggested that birds increased flight altitudes to seek out more supportive winds when wind conditions near the surface were prohibitive. Thus, birds did not select flight altitudes only to optimize wind support. Rather, they preferred to fly at low altitudes unless wind conditions there were unsupportive of migration. Overall, flight altitudes of birds in relation to environmental conditions appear to reflect a balance between different adaptive pressures.  相似文献   

2.
We assessed the effects of wind conditions on stopover decisions and fuel stores of migratory shorebirds at Chongming Dongtan in the south Yellow Sea along the East Asian–Australasian Flyway. In spring and autumn, wind directions differed among altitudes and wind speed generally increased with altitude. Numbers of shorebirds were related to wind effects at low altitudes (on the ground and at 300 and 800 m above the ground), wind effects at 300 m being the best predictor of shorebird numbers. In spring, total number of shorebirds and numbers of the four most abundant shorebird species were negatively related to wind assistance at low altitudes, more birds departing when tailwinds prevailed and more arriving when headwinds prevailed. In autumn, however, total number of shorebirds and numbers of the four most abundant species were positively related to wind assistance at low altitudes, more birds departing and more arriving with tailwinds than with headwinds. When tailwinds prevailed, the number of arriving birds was higher than the number of departing birds. The fuel stores of captured shorebirds, represented by their body mass, was related to wind effects and change in wind conditions between two consecutive days in both spring and autumn, captured birds being heavier when headwinds prevailed than in tailwind conditions, and when the wind conditions became less favourable for flight between two consecutive days. Our results suggest that wind conditions affect stopover decisions and fuel stores, and thus the optimal migration and fuel deposition strategies of migratory shorebirds.  相似文献   

3.
J. VOELCKER 《Ostrich》2013,84(2):204-214
Bruderer, B. 1994. Nocturnal bud migration in the Negev (Israel) a tracking radar study. Ostrich 65: 204–212.

The present publication summarizes the methodological possibilities of tracking radar and describes some features of nocturnal migration at two sites in the Negev, which include anwers to basic questions of bird migration. The directions of spring and autumn migration were practically opposite; only the headings in spring indicated some more compensation for stronger westerly winds. The volume of nocturnal spring migration was only about 65% of autumn migration, which may be an indication of mortality outside tie breeding area. Highest densities of migration at the two radar sites in the Negev Highlands (450 m above sea level) and in the Arava Valley (150 m below sea level) indicated flightlevels adjusted to atmospheric conditions aloft, and not to round level. Due to the trade-wind system, the birds heading southward in autumn flew mainly below flew mainly above 1500 m above sea level, while in spring they tended to make use of the anti-trades at higher altitudes. The decisive factor for altitude choice was the speed of tailwind in spring and autumn; other factors, such as temperature, humidity and pressure had no significant influence on the altitude distributions. With respect to the question of non-stop or intermittent flight across large desert areas, the data show that between the eastern deserts of Egypt and the Sinai/Negev complex the nocturnal migrants maintained their schedule of nocturnal flight and diurnal rest. A few exceptions of nocturnal migrants continuing migration at high altitudes into the day were identified mainly as heron- and gull-type birds. The proportion of waders and waterfowl identified by wing-beat pattern in nocturnal migration is nearly the same at both sites, indicating broad-front migration across the desert. The numbers of birds with continuous wingbeats is, however, so large compared to available estimates of waders and waterfowl wintering in Africa that careful reconsideration of the underlying assumptions in the radar and field estimates is necessary.  相似文献   

4.
A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's assistance (or hindrance) on migratory flight is also persistent, being dependent upon the bird's migratory direction in relation to prevailing wind conditions. We propose that, considering the western migration route of nocturnal migrants through Europe, winds should be more supportive in spring than in autumn. Thus, we expect higher ground speeds, contributing to higher overall migration speeds, in spring. To test whether winds were more supportive in spring than autumn, we quantified monthly wind conditions within western Europe relative to the seasonal direction of migration using 30 years (1978–2008) of wind data from the NCEP/NCAR Reanalysis dataset. We found that supporting winds were significantly more frequent for spring migration compared to autumn and up to twice as frequent at higher altitudes. We then analyzed three years (2006–2008) of nocturnal migratory ground speeds measured with radar in the Netherlands which confirmed higher ground speeds in spring than autumn. This seasonal difference in ground speed suggests a 16.9% increase in migration speed from autumn to spring. These results stress the importance of considering the specific wind conditions experienced by birds when interpreting migration speed. We provide a simple methodological approach enabling researchers to quantify regional wind conditions for any geographic area and time period of interest.  相似文献   

5.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

6.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

7.
Migrating animals should optimise time and energy use when migrating, travelling directly to their destination. Detours from the most direct route may arise however because of barriers and weather conditions. Identifying how such situations arise from variable weather conditions is crucial to understand population response in the light of increased anthropogenic climate change. Here we used light-level geolocators to follow Cyprus wheatears for their full annual cycle in two separate years migrating between Cyprus, over the Mediterranean and the Sahara to winter in north–east sub-Saharan Africa. We predicted that any route detours would be related to wind conditions experienced during migration. We found that spring migration for all birds included an eastern detour, whilst autumn migrations were direct across the Sahara. The direct autumn migration was likely a consequence of consistent tail-winds, whilst the eastern detour in spring is likely to be more efficient given the wind conditions which are against a direct route. Such variable migration routes shaped by coincidence with prevailing winds are probably common suggesting that some birds may be able to adapt to future changes in wind conditions.  相似文献   

8.
Nocturnal avian migration flyways remain an elusive concept, as we have largely lacked methods to map their full extent. We used the network of European weather radars to investigate nocturnal bird movements at the scale of the European flyway. We mapped the main migration directions and showed the intensity of movement across part of Europe by extracting biological information from 70 weather radar stations from northern Scandinavia to Portugal, during the autumn migration season of 2016. On average, over the 20 nights and all sites, 389 birds passed per 1 km transect per hour. The night with highest migration intensity showed an average of 1621 birds km–1 h–1 passing the radar stations, but there was considerable geographical and temporal variation in migration intensity. The highest intensity of migration was seen in central France. The overall migration directions showed strong southwest components. Migration dynamics were strongly related to synoptic wind conditions. A wind‐related mass migration event occurred immediately after a change in wind conditions, but quickly diminished even when supporting winds continued to prevail. This first continental‐scale study using the European network of weather radars demonstrates the wealth of information available and its potential for investigating large‐scale bird movements, with consequences for ecosystem function, nutrient transfer, human and livestock health, and civil and military aviation.  相似文献   

9.
Wind has a significant yet complex effect on bird migration speed. With prevailing south wind, overall migration is generally faster in spring than in autumn. However, studies on the difference in airspeed between seasons have shown contrasting results so far, in part due to their limited geographical or temporal coverage. Using the first full‐year weather radar data set of nocturnal bird migration across western Europe together with wind speed from reanalysis data, we investigate variation of airspeed across season. We additionally expand our analysis of ground speed, airspeed, wind speed, and wind profit variation across time (seasonal and daily) and space (geographical and altitudinal). Our result confirms that wind plays a major role in explaining both temporal and spatial variabilities in ground speed. The resulting airspeed remains relatively constant at all scales (daily, seasonal, geographically and altitudinally). We found that spring airspeed is overall 5% faster in Spring than autumn, but we argue that this number is not significant compared to the biases and limitation of weather radar data. The results of the analysis can be used to further investigate birds'' migratory strategies across space and time, as well as their energy use.  相似文献   

10.
The height distribution of nocturnal migrants in southern Israel was determined by con-ically scanning the sky with the pencil-beam of an X-band radar at different elevation angles. Altitudinal profiles of meteorological parameters were derived from radio sondes launched at midnight and from pilot balloons launched every 4 h. A model to predict the height distribution of birds by means of meteorological variables was developed by assuming that the observed proportions of birds within a height zone, compared with the neighbouring height zones, reflect the degree of the birds' preference for that height zone. Only one among the variables included in the multiple regression analysis proved to have a significant influence on the height distribution of migrants: the difference of tailwind speed between height zones. Simulations with 1000 birds choosing altitudes by means of the night's altitudinal profile of tailwind speed closely traced the observed distributions. The fact that all the other meteorological factors which were previously suggested to have an influence on the flight range in trans-desert migration were not selected as relevant factors is discussed. The following basic information on nocturnal bird migration in the Negev is provided as a background for the statistical analysis: Directions of migration are within very narrow limits. During the first hour after take-off, 60% of autumn migrants and 75% of spring migrants are climbing, with vertical speeds of 0.1–2 m per s and 0.1–4 m per s, respectively. During the rest of the night, climbing and descending birds are in nearly equal proportions. Thus, there is a high potential of sampling atmospheric conditions at different altitudes. Height distributions in spring and autumn show the influence of the trade wind situation, autumn migrants making use of the northerly winds at low levels in spite of high temperatures, while spring migrants tend to reach the southwesterly winds at higher levels.  相似文献   

11.
Billions of songbirds breeding in the Western Palaearctic cross the largest desert of the world, the Sahara, twice a year. While crossing Europe, the vast majority use an intermittent flight strategy, i.e. fly at night and rest or feed during the day. However, it was long assumed that they overcome the Sahara in a 40 h non-stop flight. In this study, we observed bird migration with radar in the plain sand desert of the Western Sahara (Mauritania) during autumn and spring migration and revealed a clear prevalence of intermittent migration. Massive departures of songbirds just after sunset independent of site and season suggests strongly that songbirds spent the day in the plain desert. Thus, most songbirds cross the Sahara predominantely by the intermittent flight strategy. Autumn migration took place mainly at low altitudes with high temperatures, its density decreased abruptly before sunrise, followed by very little daytime migration. Migration was highly restricted to night-time and matched perfectly the intermittent flight strategy. However, in spring, when migratory flights occurred at much higher altitudes than in autumn, in cool air, about 17% of the songbird migration occurred during the day. This suggests that flying in high temperatures and turbulent air, as is the case in autumn, may lead to an increase in water and/or energy loss and may prevent songbirds from prolonged flights into the day.  相似文献   

12.
Phenological changes in key seasonally expressed life‐history traits occurring across periods of climatic and environmental change can cause temporal mismatches between interacting species, and thereby impact population and community dynamics. However, studies quantifying long‐term phenological changes have commonly only measured variation occurring in spring, measured as the first or mean dates on which focal traits or events were observed. Few studies have considered seasonally paired events spanning spring and autumn or tested the key assumption that single convenient metrics accurately capture entire event distributions. We used 60 years (1955–2014) of daily bird migration census data from Fair Isle, Scotland, to comprehensively quantify the degree to which the full distributions of spring and autumn migration timing of 13 species of long‐distance migratory bird changed across a period of substantial climatic and environmental change. In most species, mean spring and autumn migration dates changed little. However, the early migration phase (≤10th percentile date) commonly got earlier, while the late migration phase (≥90th percentile date) commonly got later. Consequently, species' total migration durations typically lengthened across years. Spring and autumn migration phenologies were not consistently correlated within or between years within species and hence were not tightly coupled. Furthermore, different metrics quantifying different aspects of migration phenology within seasons were not strongly cross‐correlated, meaning that no single metric adequately described the full pattern of phenological change. These analyses therefore reveal complex patterns of simultaneous advancement, temporal stability and delay in spring and autumn migration phenologies, altering species' life‐history structures. Additionally, they demonstrate that this complexity is only revealed if multiple metrics encompassing entire seasonal event distributions, rather than single metrics, are used to quantify phenological change. Existing evidence of long‐term phenological changes detected using only one or two metrics should consequently be interpreted cautiously because divergent changes occurring simultaneously could potentially have remained undetected.  相似文献   

13.
ABSTRACT.   Previous studies using thermal imaging cameras (TI) have used target size as an indicator of target altitude when radar was not available, but this approach may lead to errors if birds that differ greatly in size are actually flying at the same altitude. To overcome this potential difficulty and obtain more accurate measures of the flight altitudes and numbers of individual migrants, we have developed a technique that combines a vertically pointed stationary radar beam and a vertically pointed thermal imaging camera (VERTRAD/TI). The TI provides accurate counts of the birds passing through a fixed, circular sampling area in the TI display, and the radar provides accurate data on their flight altitudes. We analyzed samples of VERTRAD/TI video data collected during nocturnal fall migration in 2000 and 2003 and during the arrival of spring trans-Gulf migration during the daytime in 2003. We used a video peak store (VPS) to make time exposures of target tracks in the video record of the TI and developed criteria to distinguish birds, foraging bats, and insects based on characteristics of the tracks in the VPS images and the altitude of the targets. The TI worked equally well during daytime and nighttime observations and best when skies were clear, because thermal radiance from cloud heat often obscured targets. The VERTRAD/TI system, though costly, is a valuable tool for measuring accurate bird migration traffic rates (the number of birds crossing 1609.34 m [1 statute mile] of front per hour) for different altitudinal strata above 25 m. The technique can be used to estimate the potential risk of migrating birds colliding with man-made obstacles of various heights (e.g., communication and broadcast towers and wind turbines)—a subject of increasing importance to conservation biologists.  相似文献   

14.
Radar observations on the altitude of bird migration and altitudinal profiles of meteorological conditions over the Sahara desert are presented for the autumn migratory period. Migratory birds fly at an average altitude of 1016 m (a.s.l.) during the day and 571 m during the night. Weather data served to calculate flight range using two models: an energy model (EM) and an energy-and-water model (EWM). The EM assumes that fuel supply limits flight range whereas the EWM assumes that both fuel and water may limit flight range. Flight ranges estimated with the EM were generally longer than those with the EWM. This indicates that trans-Sahara migrants might have more problems balancing their water than their energy budget. However, if we assume fuel stores to consist of 70% instead of 100% fat (the remainder consisting of 9% protein and 21% water), predicted flight ranges of the EM and EWM largely overlap. Increased oxygen extraction, reduced flight costs, reduced exhaled air temperature, reduced cutaneous water loss and increased tolerance to water loss are potential physiological adaptations that would improve the water budget in migrants. Both the EM and EWM predict optimal flight altitudes in agreement with radar observations in autumn. Optimal flight altitudes are differently predicted by the EM and EWM for nocturnal spring migration. During spring, the EWM predicts moderately higher and the EM substantially higher flight altitudes than during autumn. EWM predictions are therefore in better agreement with radar observations on flight altitude of migrants over the Negev desert in spring than EM predictions.  相似文献   

15.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

16.
To assess whether increasing numbers of Siberian vagrants observed in Europe in recent autumns can be linked to climate change, we predicted changes in the climatic suitability of the breeding ranges of 46 Siberian bird species known to show vagrancy to Europe and compared these predictions with observed changes in recorded rates of autumn vagrancy across eight European countries during the last three decades. There was a positive correlation between predicted increase in breeding range and vagrancy rates. A positive impact of climate change on range and population size could promote vagrancy, while the increasing use of such alternative migration flyways could provide adaptive advantages in a changing environment.  相似文献   

17.
Nocturnally migrating birds, particularly passerines, are known to be vulnerable to collision with man‐made structures such as buildings, towers or offshore platforms, yet information with respect to wind farms is ambiguous. We recorded bird flight intensities using radar during autumn migration at four wind farms situated within a major migration flyway in northern Germany and simultaneously conducted systematic searches for collision fatalities at the same sites. We found that migration traffic rates at rotor height estimated by radar observations were significantly higher during the night, yet strictly nocturnal migrants constituted only 8.6% of all fatalities at the wind farms. In contrast to the situation at other vertical structures, nocturnal migrants do not have a higher risk of collision with wind energy facilities than do diurnally active species, but rather appear to circumvent collision more effectively.  相似文献   

18.
在鸟类迁徙季节,夜间鸟击事故频发是机场鸟击发生的一个显著特点.了解鸟类的夜间迁徙规律对于改进夜间鸟击防范措施具有重要的指导意义.本研究综合采用网捕法和声音记录法对沈阳桃仙机场夜间鸟类迁徙物种组成和迁徙规律进行研究.结果表明: 56种鸟类(占比88.9%)具有夜间迁徙习性,且以后半夜迁徙为主;鸟类夜间迁徙具有明显的时间动态和迁徙次序,春季鸟类迁徙较为集中,迁徙高峰在5月中旬,主要鸟类由鹌鹑、红尾伯劳、栗耳鹀、黑喉石鵖、普通夜鹰、黄眉柳莺等组成,秋季迁徙较为分散,迁徙高峰出现在9月下旬至10月上旬,主要由鹌鹑、灰背鸫、红喉鹨、丘鹬、矛斑蝗莺和灰头鵐等组成.对夜间迁徙鸟类的危险等级评估发现,春季严重危险物种是鹌鹑和红尾伯劳,秋季严重危险物种是鹌鹑、纵纹腹小鸮、灰背鸫和丘鹬.分别从夜间迁徙鸟类组成、迁徙动态、时间节律和物种危险等级等角度提出了相应的鸟击防范对策,为桃仙机场鸟击防范提供参考.  相似文献   

19.
Monitoring studies find that the timing of spring bird migration has advanced in recent decades, especially in Europe. Results for autumn migration have been mixed. Using data from Powdermill Nature Reserve, a banding station in western Pennsylvania, USA, we report an analysis of migratory timing in 78 songbird species from 1961 to 2006. Spring migration became significantly earlier over the 46-year period, and autumn migration showed no overall change. There was much variation among species in phenological change, especially in autumn. Change in timing was unrelated to summer range (local vs. northern breeders) or the number of broods per year, but autumn migration became earlier in neotropical migrants and later in short-distance migrants. The migratory period for many species lengthened because late phases of migration remained unchanged or grew later as early phases became earlier. There was a negative correlation between spring and autumn in long-term change, and this caused dramatic adjustments in the amount of time between migrations: the intermigratory periods of 10 species increased or decreased by > 15 days. Year-to-year changes in timing were correlated with local temperature (detrended) and, in autumn, with a regional climate index (detrended North Atlantic Oscillation). These results illustrate a complex and dynamic annual cycle in songbirds, with responses to climate change differing among species and migration seasons.  相似文献   

20.
Determining the implications of global climate change for highly mobile taxa such as migratory birds requires a perspective that is spatiotemporally comprehensive and ecologically relevant. Here, we document how passerine bird species that migrate within the Western Hemisphere (= 77) are associated with projected novel climates across the full annual cycle. Following expectations, highly novel climates occurred on tropical non‐breeding grounds and the least novel climates occurred on temperate breeding grounds. Contrary to expectations, highly novel climates also occurred within temperate regions during the transition from breeding to autumn migration. This outcome was caused by lower inter‐annual climatic variability occurring in combination with stronger warming projections. Thus, migrants are projected to encounter novel climates across the majority of their annual cycle, with a pronounced peak occurring when juveniles are leaving the nest and preparing to embark on their first migratory journey, which may adversely affect their chances of survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号