首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanoma is the most lethal cutaneous cancer with a highly aggressive and metastatic phenotype. While recent genetic and epigenetic studies have shed new insights into the mechanism of melanoma development, the involvement of regulatory non‐coding RNAs remain unclear. Long non‐coding RNAs (lncRNAs) are a group of endogenous non‐protein‐coding RNAs with the capacity to regulate gene expression at multiple levels. Recent evidences have shown that lncRNAs can regulate many cellular processes, such as cell proliferation, differentiation, migration and invasion. In the melanoma, deregulation of a number of lncRNAs, such as HOTAIR, MALAT1, BANCR, ANRIL, SPRY‐IT1 and SAMMSON, have been reported. Our review summarizes the functional role of lncRNAs in melanoma and their potential clinical application for diagnosis, prognostication and treatment.  相似文献   

2.
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non‐coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.  相似文献   

3.
Impact spinal cord injury (20 g-cm) was induced in rat by weight drop. The immunoreactivity of mcalpain was examined in the lesion and adjacent areas of the cord following trauma. Increased calpain immunoreactivity was evident in the lesion compared to control and the immunostaining intensity progressively increased after injury. The calpain immunoreactivity was also increased in tissue adjacent to the lesion. mCalpain immunoreactivity was significantly stronger in glial and endothelial cells, motor neurons and nerve fibers in the lesion. The calpain immunoreactivity also increased in astrocytes and microglial cells in the adjacent areas. Proliferation of microglia and astrocytes identified by GSA histochemical staining and GFAP immunostaining, respectively, was seen at one and three days after injury. Many motor neurons in the ventral horn showed increased calpain immunoreactivity and were shrunken in the lesion. These studies indicate a pivotal role for calpain and the involvement of glial cells in the tissue destruction in spinal cord injury. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

4.
5.
6.
7.
Unlike mammals, regenerative model organisms such as amphibians and fish are capable of spinal cord regeneration after injury. Certain key differences between regenerative and nonregenerative organisms have been suggested as involved in promoting this process, such as the capacity for neurogenesis and axonal regeneration, which appear to be facilitated by favorable astroglial, inflammatory and immune responses. These traits provide a regenerative‐permissive environment that the mammalian spinal cord appears to be lacking. Evidence for the regenerative nonpermissive environment in mammals is given by the fact that they possess neural stem/progenitor cells, which transplanted into permissive environments are able to give rise to new neurons, whereas in the nonpermissive spinal cord they are unable to do so. We discuss the traits that are favorable for regeneration, comparing what happens in mammals with each regenerative organism, aiming to describe and identify the key differences that allow regeneration. This comparison should lead us toward finding how to promote regeneration in organisms that are unable to do so. genesis 51:529–544. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
Spinal cord injury (SCI) always leads to functional deterioration due to a series of processes including cell death. In recent years, programmed cell death (PCD) is considered to be a critical process after SCI, and various forms of PCD were discovered in recent years, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis. Unlike necrosis, PCD is known as an active cell death mediated by a cascade of gene expression events, and it is crucial for elimination unnecessary and damaged cells, as well as a defence mechanism. Therefore, it would be meaningful to characterize the roles of PCD to not only enhance our understanding of the pathophysiological processes, but also improve functional recovery after SCI. This review will summarize and explore the most recent advances on how apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis are involved in SCI. This review can help us to understand the various functions of PCD in the pathological processes of SCI, and contribute to our novel understanding of SCI of unknown aetiology in the near future.  相似文献   

10.
Neuropathic pain, a type of chronic and potentially disabling pain resulting from primary injury/dysfunction of the somatosensory nervous system and spinal cord injury, is one of the most intense types of chronic pain, which incurs a significant economic and public health burden. However, our understanding of its cellular and molecular pathogenesis is still far from complete. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and have recently been characterized as key modulators of neuronal functions. Emerging evidence suggested that lncRNAs are deregulated and play pivotal roles in the development of neuropathic pain. This review summarizes the current knowledge about the roles of deregulated lncRNAs (eg, KCNA2‐AS, uc.48+, NONRATT021972, MRAK009713, XIST, CCAT1) in the development of neuropathic pain. These studies suggested that specific regulation of lncRNAs or their downstream targets might provide novel therapeutic avenues for this refractory disease.  相似文献   

11.
The aim of the present report was to investigate whether, in the mammalian spinal cord, cell death induced by transient excitotoxic stress could trigger activation and proliferation of endogenous neuroprogenitor cells as a potential source of a lesion repair process and the underlying time course. Because it is difficult to address these issues in vivo, we used a validated model of spinal injury based on rat organotypic slice cultures that retain the fundamental tissue cytoarchitecture and replicate the main characteristics of experimental damage to the whole spinal cord. Excitotoxicity evoked by 1 h kainate application produced delayed neuronal death (40%) peaking after 1 day without further losses or destruction of white matter cells for up to 2 weeks. After 10 days, cultures released a significantly larger concentration of endogenous glutamate, suggesting functional network plasticity. Indeed, after 1 week the total number of cells had returned to untreated control level, indicating substantial cell proliferation. Activation of progenitor cells started early as they spread outside the central area, and persisted for 2 weeks. Although expression of the neuronal progenitor phenotype was observed at day 3, peaked at 1 week and tapered off at 2 weeks, very few cells matured to neurons. Astroglia precursors started proliferating later and matured at 2 weeks. These data show insult-related proliferation of endogenous spinal neuroprogenitors over a relatively brief time course, and delineate a narrow temporal window for future experimental attempts to drive neuronal maturation and for identifying the factors regulating this process.  相似文献   

12.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

13.
14.
15.
脊髓损伤作为一种严重的创伤性应激可以引发焦虑情绪,对患者心理健康造成极大影响。研究发现,脊髓损伤后肠道菌群失调与焦虑情绪的发生存在密切联系,因此本文从5-羟色胺系统失调、多巴胺系统失调、脑源性神经营养因子缺乏及炎症反应4个方面,探讨脊髓损伤后肠道菌群改变影响焦虑情绪发生的机制,为今后治疗脊髓损伤后焦虑情绪的深入研究和药物开发提供理论依据。  相似文献   

16.
17.
Rheumatoid arthritis, a disabling autoimmune disease, is associated with altered gene expression in circulating immune cells and synovial tissues. Accumulating evidence has suggested that long non‐coding RNAs (lncRNAs), which modulate gene expression through multiple mechanisms, are important molecules involved in immune and inflammatory pathways. Importantly, many studies have reported that lncRNAs can be utilized as biomarkers for disease diagnosis and prognostication. Recently, dysregulation of lncRNAs in rheumatoid arthritis and other autoimmune diseases has been revealed. Experimental studies also confirmed their crosstalk with matrix metalloproteinases, nuclear factor‐κB signalling and T‐cell response pertinent to autoimmunity and inflammation. Circulating lncRNAs, such as HOTAIR, differentiated patients with rheumatoid arthritis from healthy subjects. Taken together, lncRNAs are good candidates as biomarkers and therapeutic targets in rheumatoid arthritis. Further investigation on in vivo delivery of these regulatory molecules and large‐cohort validation of their clinical applicability may be useful.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号